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Abstract—We propose a general parametrizable model to cap-
ture the dynamic interaction among bacteria in the formation
of micro-colonies. Micro-colonies represent the first social step
towards the formation of structured multicellular communities
known as bacterial biofilms, which protect the bacteria against
antimicrobials. In our model, bacteria can form links in the form
of intercellular adhesins (such as polysaccharides) to collaborate
in the production of resources that are fundamental to protect
them against antimicrobials. Since maintaining a link can be
costly, we assume that each bacterium forms and maintains a link
only if the benefit received from the link is larger than the cost,
and we formalize the interaction among bacteria as a dynamic
network formation game. We rigorously characterize some of
the key properties of the network evolution depending on the
parameters of the system. In particular, we derive the parameters
under which it is guaranteed that all bacteria will join micro–
colonies and the parameters under which it is guaranteed that
some bacteria will not join micro-colonies. Importantly, our study
does not only characterize the properties of networks emerging
in equilibrium, but it also provides important insights on how the
network dynamically evolves and on how the formation history
impacts the emerging networks in equilibrium. This analysis can
be used to develop methods to influence on-the-fly the evolution of
the network, and such methods can be useful to treat or prevent
biofilm-related diseases.

Index Terms—Bacterial micro-colony, biofilm, network forma-
tion game, stable networks, signaling mechanism.

I. INTRODUCTION

BACTERIA have a tendency to attach to surfaces and self-
organize into micro-colonies, which represent the first

step toward the formation of biofilms. Biofilms are surface
associated communities that are encased within an extracellular
matrix, which can function as a structural scaffold and as a
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protective barrier to antimicrobials [1], [2]. In fact, biofilm
communities exhibit enhanced antibiotic tolerance and biofilm
infections are notoriously difficult to treat [2]–[4].

Key components of the biofilm extracellular matrix are the
exopolysaccharides, which are responsible for a wide range of
functions involving cell-to-surface and cell-to-cell interactions
[1], and can impart resistance to antibiotics [5]. Our prior
study [6], however, has shown that some specific types of
exopolysaccharides play also an active roles in the early stage
organization of micro-colonies and biofilms. A phenomenolog-
ical model of the exopolysaccharides impact on the dynamics
of micro-colonies and biofilm development, one using simple
assumptions and well-controlled approximations, would pro-
vide crucial guidance to our understanding of biofilms and the
design of biofilm therapeutic strategies.

In this work, we focus on the implications of having the
simplest type of adhesion molecule between bacteria, a cell-to-
cell adhesin that forms a linkage between two cells. We propose
a general parametrizable model, built based on experimental
evidence obtained from various studies including our own prior
works [5], [6], to capture the dynamic interaction among bacte-
ria in the formation of micro-colonies. In our model, bacteria
move along a surface and produce resources (a generalized
model for inter-cell adhesions, like polysaccharides), which
spread in space to an extent that we can control in the model,
and give a benefit to all bacteria which get access to them. When
two bacteria approach each other, in order to benefit from the
resources produced by the other, each of them can decide to stop
moving. We call this process “link” formation and we state that
a link is maintained between two bacteria if they remain close.
Bacteria can also link with bacteria that are already linked to
other bacteria, as well as can break existing links.

To develop a general model, we abstract in this paper from
the mobility and motility models of bacteria (which depend
on the particular strain of bacteria), and from the geometric
properties of the surface and the positions of bacteria, and we
assume that the meetings among bacteria are governed by a
random process, like in [7]. We consider a discrete time model
and assume that in each time slot each bacterium can break
some of its links, and a non-linked (singleton) bacterium is
matched with a certain probability with another (linked or non-
linked) bacterium and they decide whether to form a link. Since
in our prior study we observed that areas rich of resources act
as a signaling mechanism that attracts bacteria toward them
[6], we assume that the probability of being matched with a
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bacterium that has high connectivity (many links), and hence
it is located in an area rich of resources, is higher than the
probability of being matched with a bacterium that has low
connectivity.

We consider a population including bacteria in two different
physiological states, which we refer to as types. High type
bacteria increase their resource production rate when linked to
other bacteria, for example [6] shows that the resource produc-
tion rates of some bacteria increase when they are located in
areas rich of resources. Low type bacteria are considered to have
constant resource production rate regardless of their links [6].
Moreover, we make the assumption that bacteria are selfish and
myopic [8], i.e., they choose whether to form or break a link
such that they maximize their immediate utilities.

We will study two limiting cases. In the case of complete
information bacteria know in advance the immediate utilities
they will obtain by forming links with other specific bacteria.
In the case of incomplete information bacteria know the utilities
associated to a link only after they have formed it. In the context
of microbiology, if bacteria have a long time to sample the
environment and integrate inputs (which corresponds to slow
motility compared to gene expression and protein synthesis
response times), or if the environmental conditions are slowly-
varying in time, then bacteria are well-described by the first
limit. In contrast, if bacteria move quickly relative to their
response times or if the environmental conditions vary signifi-
cantly in time, then the latter limit would be more appropriate.
For example, something as simple as nutritional conditions can
impact motility and biochemical signaling [9].

As a main contribution of this work, we characterize the
possible evolutions of the micro-colonies formed by bacteria
depending on the system parameters. In particular, we define
a stable network as a network in which all bacteria belong to
some micro-colonies, and we analytically derive the conditions
on the system parameters, in both complete and incomplete
information settings, under which a stable network emerges,
under which a stable network does not emerge, and under which
the emergence of a stable network is determined by chance.
Section VII shows that the types of behavior predicted by our
model are observed in real-world experiments.

The results presented in this manuscript represent an impor-
tant step toward the derivation of bacterial behavior models,
which can help us answer several enabling questions such as:
How do combinations of motility, polysaccharide production,
and antibiotics influence bacterial decisions to form micro-
colonies and eventually biofilms that are inherently more tol-
erant to antibiotics? Present strategies to treat biofilm-related
diseases are based solely on killing bacteria, which result
in a large selection pressure to evolve drug-resistant strains.
Conversely, a dynamic model of network formation and micro-
colony development allows to foresee how a bacterial commu-
nity responds to a complex set of stimuli, and whether bacterial
community decisions can be influenced. Since our model is
dynamic and incorporates tunable parameters, it allows for
specific microbiological experiments to be designed. Moreover,
our general model can be calibrated for various strains of
bacteria and types of linkage-generating adhesions, such as
polysaccharides. Finding the inputs that will disassemble a

micro-colony in a controlled manner will have a transformative
impact on biofilm therapeutics.

The rest of the paper is organized as follows. Section II
reviews the existing literature in nano-scale communications
and network formation. Section III describes our model and
introduces the basic concepts necessary to study how micro-
colonies form. Section IV formalizes the interaction of the
bacteria as a dynamic network formation game. Section V
analyzes the dynamic network formation game. Section VI
presents several illustrative results aimed to understand the
essential characteristics of micro-colonies formation and their
dependence on the key parameters of the system. Section VII
shows a preliminary evaluation of the proposed model.
Section VIII concludes the paper.

II. RELATED WORKS

A. Molecular Communication

Molecular communication [10] is a nanoscale communica-
tion paradigm that has emerged recently, that enables engi-
neered biological nanomachines to exchange information with
the natural biological nanomachines which form a biological
system. Distinct from the current telecommunication paradigm,
molecular communication uses molecules as the carriers of
information. Many works propose and study models for mole-
cular communication [10]–[16]. For example, [11] proposes a
model for the reception noise, [10] studies some approaches to
reduce the noise, [12]–[14] investigate the channel capacity and
achievable rates, [15] proposes a synchronization-free molecu-
lar communication scheme, whereas [16] proposes a model of
bacterial communication based on electron transfer.

Our work is clearly different from this literature because
it does not focus on methods to enable the exchange of in-
formation among static nanomachines. Our research focuses
on deriving network formation game models to analyze the
dynamic formation of micro-colonies of bacteria.

B. Network Science

There is a renowned literature that first studies network
formation as the result of strategic interaction among a group
of self-interested agents [7], [17]–[19]. In these papers, it is
common to assume agent homogeneity. This is the strongest
form of complete information, in the sense that agents do not
only know their exact utilities from linking to others, but are
also aware that the utilities are solely determined by the network
topology, and that the agents’ identities have no role in affecting
utility characteristics. We differ from these works because in
our paper bacteria are heterogeneous in utilities they provide
to and receive from others, and they are myopic, i.e., they only
care about their immediate utility when making decisions.

In the network formation literature that considers agent het-
erogeneity, the concept “heterogeneity” is interpreted from var-
ious angles: as differentiated failure probabilities for different
links [20], as differences in values obtained from links and costs
for forming links across agents [21], [22], as different amounts
of valuable information produced endogenously [23], [24], as
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different endogenous effort levels [25], or as agent-specific re-
source holding amounts [26]. Despite such heterogeneity, these
works assume complete information, i.e., that agents know their
exact utilities from linking to others. We differ from these works
because in our paper bacteria are myopic and we analyze also
the incomplete information setting, in which a bacterium does
not know the type of a bacterium it meets and whether this
bacterium is connected to other bacteria.

Importantly, most of the above cited works study the proper-
ties of a network after it has achieved a stable point, but they do
not analyze if and, possibly, how the network becomes stable.
A key merit of our work, as opposed to the above literature,
is that we study the dynamic evolution of the network, which
has two fundamental advantages. First, we are able to predict
under which conditions a stable network does, does not, or may
emerge. Second, the understanding of the network evolution
process allows to develop methods to influence on-the-fly the
evolution of the network, and such methods can be useful to
treat or prevent biofilm-related diseases.

III. SYSTEM MODEL

We consider a population of bacteria that are distributed
on a surface. We denote by K the number of bacteria in the
surface and by K = {1, . . . , K} the set of bacteria. In our model,
bacteria move along the surface, produce resources, and form
new links or break existing links with other bacteria. The re-
sources produced by the bacteria are secreted polysaccharides.
At present, our understanding of the chemical nature of these
polysaccharides, and therefore the wetting properties of such
polysaccharides on surfaces, is incomplete. To have the most
general possible model, we assume that part of the resource
is adhered to the cell body [5], and part of it wets the surface
via spreading. In Section IV-A we will introduce a tunable
parameter, the spread factor δ, to fit the properties of specific
polysaccharides once their physical properties are known.

We say that there is a link between two bacteria i and j if
their distance is below a certain threshold and they intentionally
decide not to move and maintain such a distance. The images in
[5] suggest that such distance threshold is about 0.3 microns,
i.e., 1

10 the size of a typical cell.1 A link is formed and
maintained bilaterally, i.e., both bacteria must agree to form
and maintain the links. Indeed, if a bacterium does not want to
maintain a link it can leave that specific location and break the
link. Moreover, a link is undirected, because a link between
i and j automatically implies a link between j and i. If two
bacteria are linked, because of their proximity, each of them
can exploit part of the resources produced but not used by the
other bacterium, i.e., two bacteria have a mutual benefit to stay
close to each other.

We consider a population including bacteria in two different
physiological states, which we refer to as types. Different types
of bacteria differ in the resource production rate they adopt
when they are linked with other bacteria: high type bacteria

1Notice that we abstract from geometric concepts. Our model can take into
account the effects of a lower (higher) distance by increasing (decreasing) the
spread factor and decreasing (increasing) the probability that two bacteria meet.

(H) increase their resource production rate when linked to other
bacteria, whereas low type bacteria (L) are considered to have
constant resource production rate regardless of their links [6].
We denote by K(L) and K(H) = K − K(L) the number of low

and high type bacteria, respectively, and by ρL
#= K(L)

K and

ρH
#= K(H)

K the ratio of low and high type bacteria, respectively.
Also, we denote by ti ∈ {L, H} the type of bacterium i, i ∈ K,
and by t = (t1, . . . , tK) the type profile.

In this paper, we divide the time into equal slots and we
characterize the history of interactions among bacteria and its
influence on the formation of micro-colonies. We write g(n)

ij = 1
if bacteria i and j are linked at the beginning of time slot n,
and g(n)

ij = 0 otherwise. We formally define the network G(n)

as the set of all bacteria that are linked at the beginning of

the n-th time slot, G(n) #= {(i, j) : g(n)
ij = 1}, and the pair (K,G)

represents a graph [27]. The network at the end of time instant
n is denoted by G(n+1), because it corresponds to the network at
the beginning of the next time instant. It is also useful to define
the intermediate network G(n)

in time instant n, as described
in Section IV this represents an intermediate step between G(n)

and G(n+1).
We define the length ℓ

(n)
ij of a link (i, j) at time slot n

as the number of slots since the link has been formed, i.e.,
ℓ
(n)
ij

#= n − max{m ≤ n : g(m)
ij = 0}. Since there is a reaction

time between when bacteria detect environmental cues and
when they response to them [28], we define the minimum link
length ℓmin ≥ 1, meaning that a link (i, j) cannot be broken if
ℓ
(n)
ij < ℓmin.

Given a network G (that may be either G(n) or G(n)
), we

define the set of i’s neighbors as the set of bacteria to which

bacterium i is linked to, Ni
#= {j ∈ K : gij = 1}, and we say that

bacteria i and j are connected, denoted by i
G↔ j, if (i, j) ∈ G or

there are k bacteria such that (i, i1), (i1, i2), . . . , (ik, j) ∈ G. We
define the distance dij between two connected bacteria i and j
as the smallest number of links between i and j. We say that
bacterium i is singleton if (i, j) ̸∈ G, ∀ j ̸= i, and we denote by
KS the set of singleton bacteria.

(K,G) is a subgraph of (K,G) if K ⊆ K and G contains
all the original links among the bacteria in K. A component
C of a graph is a subgraph in which any two bacteria are
connected to each other and which is connected to no additional
bacteria in the original graph. We abuse notation and write
i ∈ C if bacterium i belongs to the set of bacteria defined
by the component C. The size |C| of a component C is the
number of bacteria belonging to the component, whereas the

diameter DC
#= maxi,j∈C dij is the maximum distance between

two bacteria i and j belonging to C. Note that a singleton
bacterium is itself a component with size 1 and diameter 0, and
each bacterium i ∈ K belongs to one and only one component.

IV DYNAMIC NETWORK FORMATION GAME

In this section we formalize the interaction of the bacteria
as a dynamic network formation game [7], in which bacteria
are assumed to be myopic, i.e., they select their actions to
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maximize their immediate utilities. Moreover, we define the con-
cepts of micro-colony and stable network, which will be used in
Section V to analyze how the network G(n) evolves in time.

A. Utility Structure

Antibiotic tolerance develops very early in the formation of
a biofilm, on the order of 1–3 hours after a community initiates
[29]. Our prior study has attributed this to polysaccharides
[5]. Hence, we assume that a bacterium i obtains a benefit,
quantified by a utility function, whenever it links to another
bacterium j, because it exploits part of the resources produced
but not used by j. Given the network G(n) in time instant n, we
define bacterium i’s utility as follows:

ui

(
t,G(n)

)
#=

{
0 if i ∈ K(n)

S∑
j↔i δ

dij−1f (tj) − c(ti) otherwise
(1)

f (tj) > 0 represents the benefit that bacterium i receives from
bacterium j (having type tj) it is linked with, δ ∈ (0, 1) is the
spread factor, such that bacterium i can also benefit from a
bacterium j it is not directly linked with, but such a benefit
decreases exponentially in their distance, and c(ti) ≥ 0 is a cost
to pay to be part of a non-singleton component. Since high type
bacteria increase their resource production rate when linked to
other bacteria and low type bacteria always adopt a constant
production rate, we consider f (H)> f (L) and c(H) > c(L) = 0.

The benefit that a bacterium i achieves when forming a
link with a bacterium j is more attractive if j is already con-
nected to many bacteria. We refer to this effect as increasing
returns to link formation. This means that it is desirable and
efficient for bacteria to be part of components having large
sizes. This is coherent with the experimental observation that
biofilm exhibit enhanced antibiotic tolerance [4]. However, to
understand under which conditions individual bacteria have an
incentive to begin such a formation process, we need to formal-
ize the interaction among bacteria in each time slot as a game
(Section IV-B), define the equilibrium concepts of this in-
teraction (Section IV-C), define stable states for the network
(Section IV-D), and study how the network can evolve
(Section V).

B. The Game

The interaction among bacteria is modeled as follows. At
time slot 1, bacteria form an empty network, i.e., G(1) = ∅. In a
generic time slot n, the following events happen sequentially:

1) for each link (i, j) ∈ G(n) such that ℓ
(n)
ij ≥ ℓmin, bacteria

i and j select whether to break the link (i, j). Denote
by a(n)

ij ∈ {0, 1} and a(n)
ji ∈ {0, 1} the choice of bacteria

i and j, respectively, where 1 (0) means that the bacterium
wants to maintain (break) the link. Since links are main-
tained bilaterally, the new network after this interaction is

G(n) #= {(i, j) : g(n)
ij = 1}, where g(n)

ij
#= min{a(n)

ij , a(n)
ji };

2) with a certain probability one singleton bacteria i ∈
K(n)

S approaches another bacteria j (singleton or non
singleton), this event is denoted by (i, j) ∈ E (n), and

they decide whether to form a link. Denote by s(n)
ij ∈

{0, 1} and s(n)
ji ∈ {0, 1} the choice of bacteria i and j,

respectively, where 1 (0) means that the bacterium wants
to form (not to form) the link. Since the link is formed
bilaterally, the new network after this interaction

is G(n+1) #= G(n)
if g(n+1)

ij
#= min{s(n)

ij , s(n)
ji } = 0, and

G(n+1) #= G(n) ⋃{(i, j)} if g(n+1)
ij = 1;

3) each bacterium i receives the utility ui(t,G(n+1)).

The meeting among bacteria in time step 2 is modeled as
follows. With probability γ (|K(n)

S |), increasing in the number

of singleton bacteria in G(n)
, one singleton bacterium i is picked

uniformly in K(n)
S and is matched with one bacterium j, j ̸= i.

Notice that we do not allow the formation of multiple links
during the same time slot. An interpretation for this is that the
considered time slot is so short that the probability that more
than one pairs of bacteria meet is negligible compared to the
probability that only one pair of bacteria meets.

Since in our prior study we observed that areas rich of
resources act as a signaling mechanism that attracts bacteria
toward them [6], we assume that the probability of being
matched with a bacterium j that has high connectivity (many
links), and hence it is located in an area rich of resources, is
higher than the probability of being matched with a bacterium
that has low connectivity. Specifically, bacterium j is drawn
from the distribution

pj =
h

(∣∣∣N (n)
j

∣∣∣
)

∑
k ̸=i h

(∣∣∣N (n)
k

∣∣∣
) , j ∈ K, j ̸= i,

where the signaling mechanism h : N → ℜ+ is a positive non-
decreasing function.

C. Equilibrium Concepts for Complete and Incomplete
Information Settings

We consider the interaction among bacteria in two different
scenarios. In the complete information setting bacteria know
in advance the immediate utilities they will obtain by forming
links with other specific bacteria. This implies that, when
bacterium i approaches bacterium j, if j is singleton then i is able
to recognize its type ([30] shows that some bacteria have this
ability), whereas if j is not singleton then i is able to estimate
the amount of resource produced by the component j belongs to.
We define the following equilibrium concept for the complete
information game.

Definition 1: An action profile2 a(n) =
({aij}(i,j)∈G(n):ℓ(n)

ij ≥ℓmin
, {sĩj̃}(ĩ,j̃)∈E (n)

) in time instant n is a myopic

equilibrium in the complete information setting if and only if,

2In Game Theory an action profile represents a set of actions, one for each
player (in this paper the players are the bacteria), taken at a specific time
instant. This must not be confused with a strategy profile, that specifies the
action profiles that will be chosen at every opportunity to act. A strategy profile
reduces to an action profile only if the game is static, i.e., if players act only
once and simultaneously.
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∀ i ∈ K : N (n)
i ̸=∅, ∀ j ∈N (n)

i : ℓ
(n)
ij ≥ ℓmin, ∀ âij ∈ {0, 1}, and

∀ (ĩ, j̃) ∈ E (n), the following conditions are satisfied:

C1 ui(t,G(n) − {(i, j) : a(n)
ij = 0}) ≥

ui(t,G(n) − {(i, j) : â(n)
ij = 0}),

C2 if ∃ j : a(n)
ij = 0 then ui(t,G(n) − {(i, j) : a(n)

ij = 0}) >

ui(t,G(n)),
C3 s(n)

ĩj̃
= 1 if and only if uĩ(t,G

(n) ∪ (ĩ, j̃)) ≥ uĩ(t,G
(n)

).

Condition C1 states that bacterium i selects the actions a(n)
ij ,

j∈N (n)
i , i.e., which links to maintain, to maximize (a posteriori)

the utility ui(t,G(n)) received at the end of the last time slot.
Condition C2 states that bacterium i prefers to maintain the
links instead of breaking them if the resulting utility is the same.
Condition C3 states that bacterium ĩ that approaches bacterium
j̃ selects the action s(n)

ĩj̃
, i.e., whether to form a new link with j̃,

to maximize the utility uĩ(t,G(n+1)) it will obtain at the end of
the current slot.

In the incomplete information setting bacteria do not know
the utilities they will obtain by forming a link, because they are
not able to detect the type of the other bacteria and the amount
of resource generated by the component the other bacteria
belong to. In this case, we assume that bacteria always form
new links, i.e., s(n)

ĩj̃
= 1, ∀ (ĩ, j̃) ∈ E (n), and that each bacterium

i selects the actions a(n)
ij , j ∈ N (n)

i , i.e., which links to maintain,
to maximize (a posteriori) the utility ui(t,G(n)) received at the
end of the last time slot. Hence, the equilibrium concept for the
incomplete information game is defined as follows.

Definition 2: An action profile a(n) =({aij}(i,j)∈G(n):ℓ(n)
ij ≥ℓmin

) in

time instant n is a myopic equilibrium in the incomplete infor-
mation setting if and only if, ∀ i ∈ K : N (n)

i ̸= ∅, ∀ j ∈ N (n)
i :

ℓ
(n)
ij ≥ ℓmin, ∀ âij ∈ {0, 1}, and ∀ (ĩ, j̃) ∈ E (n), the following

conditions are satisfied:

C4 ui(t,G(n) − {(i, j) : a(n)
ij = 0}) ≥

ui(t,G(n) − {(i, j) : â(n)
ij = 0}),

C5 if ∃ j : a(n)
ij = 0 then ui(t,G(n) − {(i, j) : a(n)

ij = 0}) >

ui(t,G(n)).

Proposition 1: In both complete and incomplete information
settings, in each time instant n the myopic equilibrium exists
and is unique.

Proof: A myopic equilibrium for the incomplete informa-
tion setting can be obtained maximizing, for each bacterium i,
the left side of condition C4 with respect to the actions a(n)

ij , j ∈
N (n)

i . Since the action space if finite, a solution exists. More-
over, each solution must satisfy either a(n)

ij = 0, ∀ j ∈ N (n)
i , or

a(n)
ij = 1, ∀ j ∈ N (n)

i . Indeed, maintaining all links is strictly
better than maintaining only a subset of them, because the cost
to pay for a single link is equal to the cost to pay for multiple
links. Hence, there are only two possible solutions to maximize
the left side of condition C4. If they are equivalent in terms of
i’s utility, condition C5 says to take that one in which all links
are maintained. Hence, the myopic equilibrium is unique for the

incomplete information setting. In addition to the above, in the
complete information setting condition C3 uniquely determines
the action sĩj̃ in case bacterium ĩ approaches bacterium j̃. !

Remark 1: The uniqueness of the equilibrium results from
the fact that the best action of each bacterium is independent
from the actions of the other bacteria. For instance, if i has
the incentive to maintain (form) a link with j, its best action is
a(n)

ij = 1 (s(n)
ij = 1), regardless of j’s action. Indeed, if j decides

to maintain (form) the link then i achieves its goal, whereas if j
decides not to maintain (form) the link then i does not incur any
additional cost with respect to the action a(n)

ij = 0 (s(n)
ij = 0).

This property implies that the resulting myopic equilibrium is
robust to changes in the actions of the other bacteria.

Remark 2: Proposition 1 implies that in each time slot n,
given the network G(n) and the parameters of the system, the
decisions of the bacteria are unique. However, the evolution of
the network G(n) is not unique, because it depends both on these
decisions and on the randomness of the meetings among bacte-
ria. Throughout the paper we implicitly assume that bacteria, in
each time slot n, adopt the unique myopic equilibrium, and we
study the possible evolutions of the network G(n) depending of
the parameters of the system.

D. Micro-Colonies and Stable Networks

We say that the link (i, j) ∈ G(n) is stable if (i, j) ∈ G(m),

∀ m > n, regardless of the realization of the meetings among
bacteria; whereas, if there is a positive probability that (i, j) ̸∈
G(m) for some m > n, we say that the link is unstable.

Definition 3 (Micro-Colony): M is a micro-colony in time
instant n if and only if the following conditions are satisfied

A1) M is a subset of a component;
A2) ∀ i, j ∈ M such that (i, j) ∈ G(n), we have that (i, j) is

stable;
A3) ∀ i ∈ M and j ̸∈ M such that (i, j) ∈ G(n), we have that

(i, j) is unstable;
A4) |M| ≥ 2.

A1 states that all the bacteria belonging to the micro-colony
are connected to each others. A2 is a stability condition, it
states that the links among bacteria in the micro-colony are
never broken (hence, the size of a micro-colony can only grow
in time), whereas by A3 a bacterium belonging to the same
component C of a micro-colony, but not belonging to the micro-
colony, may leave the component in the future. A4 excludes
a singleton bacterium from being considered a trivial form of
micro-colony.

Exploiting the definition of micro-colony, we can now define
a network stability concept.

Definition 4 (Stable-Network): G(n) is a stable network if
each bacterium belongs to a micro-colony.

As a consequence, if G(n) is a stable network then no link
will ever be formed or broken and each bacterium is linked
to at least another bacterium (i.e., no bacterium moves freely
along the surface). A stable network can be interpreted as an
important step toward the formation of a biofilm. Indeed, if
there are many bacteria that never link to micro-colonies then
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biofilm formation is greatly reduced and the integrity of resulted
biomass is severely degraded [31].

Let GS be the set of stable networks. We say that G(n)

converges to a stable network if and only if limn→+∞ G(n)

exists and belongs to GS. We say that G(n) does not converge
to a stable network if and only if limn→+∞ G(n) does not
exists, or it exists but it does not belong to GS. Notice that
the evolution of the network G(n) is a random process due to
the randomness of the meetings among bacteria. However, for
some set of parameters it may be the case that G(n) converges
(does not converges) to a stable network with probability 1,
regardless of the evolution it follows. Formally, denoting by
P[A] the probability of a generic event A, we say that G(n)

converges to a stable network with probability 1 if and only
if P [limn→∞ G(n) ∈ GS] = 1, G(n) does converges to a stable
network with probability 1 if and only if P [limn→∞ G(n) ̸∈
GS] = 1.

Remark 3: “G(n) does not converge with probability 1” is not
the complementary of “G(n) converges with probability 1”; if
fact, it is possible that the probability that a network converges
is positive but lower than 1. In these cases the convergence is
determined by chance, by the realization of the meeting among
bacteria.

V. EVOLUTION TO A STABLE NETWORK

In this section we analyze the dynamic network formation
game formally described in Section IV, in both the complete
and the incomplete information settings. As a main contribution
of this section we analytically derive the conditions on the
system parameters under which the network G(n) converges
to a stable network with probability 1, under which G(n) does
not converge to a stable network with probability 1, and under
which the convergence of G(n) is determined by chance.

A. Complete Information Setting

In this subsection we analyze the complete information set-
tings. In the first result, we characterize the actions of low type
bacteria, the action of high type bacteria when linked to some
other bacteria, and the actions of singleton high type bacteria
that meet other singleton bacteria.

Lemma 1: For each bacterium i and for each neighbor j ∈
N (n)

i we have a(n)
ij = 1.

For each singleton low type bacterium ĩ that approaches a
singleton bacterium j̃ in time instant n, we have s(n)

ĩj̃
= 1.

For each singleton high type bacterium ĩ that approaches a
singleton low type bacterium j̃ in time instant n, we have s(n)

ĩj̃
=

1 if and only if f (L) ≥ c(H).
For each singleton high type bacterium ĩ that approaches a

singleton high type bacterium j̃ in time instant n, we have s(n)

ĩj̃
=

1 if and only if f (H) ≥ c(H).
Proof: Given the utility structure (1), it is trivial that

1) because c(L) = 0, low type bacteria always benefit from being
linked to other bacteria, 2) a singleton high type bacterium
increases its utility if it links with a singleton low type bac-

terium if and only if f (L) ≥ c(H), and 3) a singleton high type
bacterium increases its utility if it links with a singleton high
type bacterium if and only if f (H) ≥ c(H). It remains to show
that high type bacteria always want to maintain a link. First,
notice that a bacterium does not break a strict subset of its links
because the cost to pay for a single link is equal to the cost
to pay for multiple links. Hence, a bacterium selects either to
break all links or to maintain all links. To conclude our proof
we show that the utility of each bacterium i is non decreasing
in time, which implies that no bacterium has the incentive to
break all of its links returning to the initial situation. Let u(n)

i the
utility of i at time slot n. Assume i is singleton at the beginning
of the n-th slot, if it does not form a link during the n-th slot
then u(n+1)

i = u(n)
i , whereas if it forms a link then u(n+1)

i ≥ u(n)
i .

Assume i is non singleton at the beginning of the n-th slot, if
no bacterium links to its component during the n-th slot then
u(n+1)

i = u(n)
i , whereas if a bacterium links to its component

then u(n+1)
i > u(n)

i . !
Lemma 1 shows that, in the complete information setting, all

the links are stable. In fact, when forming a link, a bacterium
knows in advance it will increase its utility at the end of the
current time slot, and such increment can only increase in time
because new bacteria can join the component it belongs to. As a
consequence, since bacteria do not break links and do not leave
the components they belong to, the concept of micro-colony
coincides with the concept of component with size at least 2.
This is remarked in the following proposition.

Proposition 2: All components C of size at least 2 are micro-
colonies.

Proof: Lemma 1 proves that all components are stable,
hence all components of size at least 2 satisfy A1–A4. !

Another implication of Lemma 1 is that singleton high type
bacteria do not form links with singleton bacteria if f (H) <

c(H). In this case, high type bacteria must wait for low type
bacteria to form micro-colonies before starting to form links.
One may wonder if there exists a minimum size a micro-colony
of low type bacteria must have before a high type bacterium
joins it. Proposition 3 answers positively to this question.

Proposition 3: Let M be a micro-colony. If f (H) < c(H) and

|M|<Nth,1
#= c(H) − f (L)

δf (L) + 2 then M does not contain bacteria
of high type.

Proof: We prove the statement by contradiction. Assume
M is a micro-colony that contains high type bacteria and
|M| < Nth,1. Denote by i the first high type bacterium that
linked to the micro-colony, by n the time slot in which this
happened, and by M the resulting micro-colony after the link
formation. Notice that the condition f (H) < c(H) excludes the
possibility that the micro-colony generated from a link between
two high type bacteria, hence M is formed by low type bacteria
except for i. Then

ui

(
t,G(n)

)
≤ f (L) + (|M| − 2

)
δf (L) − c(H)

≤ f (L) + (|M| − 2) δf (L) − c(H) < 0,

where the first inequality is valid because i’s maximum utility
is achieved when it links to a bacterium that is directly linked



82 IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 1, NO. 1, MARCH 2015

with all the other bacteria, the second inequality is valid
because a micro-colony can only increase in size, and the third
inequality is valid because |M| < Nth,1. This contradicts the
statement that i’s utility in non decreasing in time (see proof
Lemma 1). !

Remark 4: Nth,1 − 1 represents the minimum size a micro-
colony of low type bacteria must have such that a high type
bacterium may have an incentive to join the micro-colony.

|M| ≥ Nth,1 − 1 is a necessary condition such that a high
type bacterium joins the micro-colony M. Now we investigate
the existence of a sufficient condition, i.e., the existence of a
minimum size |M| that guarantees that high type bacteria al-
ways want to link to a bacterium belonging to M. We consider
only the case f (L) < c(H), because Lemma 1 guarantees that
for f (L) ≥ c(H) high type bacteria always want to form a link.

Proposition 4: If f (L) < c(H) and δ > c(H)−f (L)
c(H) , then there

exists Nth,2(f (L), c(H), δ), increasing in c(H) and decreasing
in f (L) and δ, such that if a high type bacterium ĩ meets a
bacterium j̃ belonging to a micro-colony M with size |M| ≥
Nth,2(f (L), c(H), δ), then s(n)

ĩj̃
= 1.

Proof: The utility ĩ obtains forming a link with j̃ is
uĩ ≥ ∑|M|−1

j=0 δjf (L) − c(H) = f (L) 1−δ|M|
1−δ − c(H), where the

first inequality is valid because ĩ’s lowest utility is achieved
when all bacteria in M (except for ĩ) have low type, when they
are aligned, and j̃ is located in one extreme of the line. Hence,
uĩ ≥ 0 (i.e., ĩ wants to form a link) if

f (L)
1 − δ|M|

1 − δ
≥ c(H). (2)

For |M| = 1 the inequality (2) is not satisfied because f (L) <
c(H). Since the left side of (2) increases in |M| and since
for |M| → +∞ the inequality (2) holds strictly (because δ >
c(H)−f (L)

c(H) ), then there exists finite Nth,2(f (L), c(H), δ) such that
for |M| = Nth,2(f (L), c(H), δ) the inequality (2) holds with
equality. Hence, for |M| ≥ Nth,2(f (L), c(H), δ) the inequality
2 holds. Finally, since the left hand side of (2) increases in f (L)

and δ, whereas the right hand side of (2) increases in c(H), we
have that Nth,2(f (L), c(H), δ) increases in c(H) and decreases
in f (L) and δ. !

Remark 5: Nth,2 represents a critical size for a micro-colony
M, above which high type bacteria always want to link to a
bacterium belonging to M.

Proposition 4 implies that high type bacteria cannot remain
singleton forever if there exists a micro-colony with size at least
Nth,2, because they would eventually be attracted by the micro-
colony. This allows us to characterize the structure of a network
that does not converge to a stable network.

Theorem 1: If G(n) does not converge to a stable network,
then G(n) converges to a network in which all high type bacteria
are singleton and each low type bacterium belongs to a micro-
colony with size lower than Nth,2.

Proof: We prove that all high type bacteria will be
singleton by contradiction. Assume the high type bacterium i
belongs to a micro-colony in a generic time instant n and let
(i, j) the first link formed by i. Since a micro-colony can only
grow in size, the utility a singleton high type bacterium obtains

by forming a link with j after time instant n is at least as high
as the utility i achieved when it formed the link with j, and
as a consequence it is higher than the utility it obtains being
singleton. Hence, a high type bacterium cannot stay singleton
forever because, if it does not join a micro-colony in the mean-
time, it will eventually meet j (such event happens with positive
probability in each time slot) and form a stable link with it.
This contradicts the fact that G(n) does not converge to a stable
network.

A low type bacterium cannot stay singleton forever because,
if it does not join a micro-colony in the meantime, it will even-
tually meet another low type bacterium (such event happens
with positive probability in each time slot) and form a stable
link with it. Finally, if a micro-colony of low type bacteria has a
size larger than Nth,2, then a high type bacterium will eventually
meet a bacterium belonging to the micro-colony and, because
of Proposition 4, it will join the micro-colony, contradicting the
fact that all high type bacteria are singleton. !

Now we analytically derive the conditions on the system
parameters under which the network G(n) converges to a stable
network with probability 1, under which G(n) does not converge
to a stable network with probability 1, and under which the
convergence of G(n) is determined by chance.

Theorem 2: G(n) converges with probability 1 to a stable net-
work if and only if either 1) f (H) ≥ c(H), or 2) (1 + δ)f (L) ≥
c(H) and K(L) ≥ 2, or 3) K(H) = 0.

G(n) does not converge to a stable network with probability 1
if and only if f (H) < c(H), K(L) < Nth,1 − 1, and K(H) > 0.

Proof: If f (H) ≥ c(H) then a high type bacterium cannot
be singleton forever, because it would eventually meet another
high type bacterium (singleton or not) and form a stable link
with it. Hence, exploiting Theorem 1, we have f (H) ≥ c(H)
implies that G(n) converges with probability 1 to a stable
network.

If (1 + δ)f (L) ≥ c(H) and K(L) ≥ 2 then a high type bac-
terium cannot be singleton forever, because it would eventually
meet a low type bacterium that is connected to at least another
low type bacterium and form a stable link with it. Hence,
exploiting Theorem 1, we have (1 + δ)f (L) ≥ c(H) implies
G(n) converges with probability 1 to a stable network.

If K(H) = 0, then there are no high type bacteria and a
network of low type bacteria always converges with probability
1 to a stable network.

If f (H) < c(H), K(L) < Nth,1 − 1, and K(H) > 0, then the
largest colony of low type bacteria has a size lower than Nth,1 −
1. Hence, for Theorem 1 we have f (H) < c(H) and K(L) <

Nth,1 − 1 implies that G(n) does not converge to a stable network
with probability 1.

Finally, we prove that if f (H) < c(H), (1 + δ)f (L) < c(H),
K(L) ≥ Nth,1 − 1, and K(H) > 0, then the probability that G(n)

converges to a stable network is positive but lower than 1.
On one hand, assume that there exists a time instant n such
that no low type bacterium is singleton and the size of all
micro-colonies is lower than Nth,1 − 1 (e.g., low type bacteria
are connected in couples). Notice that this event happens with
positive probability. Proposition 3 guarantees that no high type
bacterium will ever link to a micro-colony, and the network
does not converge to a stable network. On the other hand,
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assume that there exists a time instant n such that at least
Nth,1 − 1 low type bacteria are connected together in a star
topology. Notice that this event happens with positive prob-
ability. A high type bacteria i will eventually meet the low
type bacteria located at the center of the star topology. Denote
by ui the utility i would obtain if it forms the link, we have
ui ≥ f (L) + (Nth,1 − 2)δf (L) − c(H) = 0; hence, i will form a
stable link and Theorem 1 guarantees that G(n) converges to a
stable network. !

Remark 6: Theorem 2 implies that if f (H) < c(H), (1 +
δ)f (L) < c(H), and K(L) ≥ Nth,1 − 1, then the convergence of
G(n) is determined by chance.

Remark 7: If f (H) < c(H), low type bacteria play a funda-
mental role in the initial phase of the micro-colonies formation
process. In fact, in this case high type bacteria have an incentive
to link with other bacteria only after low type bacteria have
formed micro-colonies of a large enough size.

To understand why and how G(n) converges (does not con-
verges) to a stable network, in the following we describe some
examples. If f (H) ≥ c(H) then two singleton high type bacteria
form a link when they meet, and this enables the formation
of a micro-colony, as shown by Fig. 1(a). If (1 + δ)f (L) ≥
c(H) then a high type bacterium meeting a pair of low type
bacteria forms a link with them, and this enables the formation
of a micro-colony, as shown by Fig. 1(b). If f (H) < c(H),
K(L) < Nth,1 and K(H) > 0, then the network cannot evolve
in a condition such that a high type bacterium has the incen-
tive to form a link, as shown by Fig. 1(c). If f (H) < c(H),
(1 + δ)f (L) < c(H), K(L) < Nth,1, and K(H) > 0, then it is
possible that enough low type bacteria connect together giving
an incentive for high type bacteria to join the micro-colony, but
it is also possible that low type bacteria form many small size
micro-colonies that high type bacteria are not willing to join,
both possibilities are shown in Fig. 1(d).

Now we investigate the robustness of a stable network, that
is, we wonder what happens to a stable network if some links
are broken regardless from the actions chosen by bacteria (e.g.,
some bacteria can die). Does the network converges again to a
stable network? Theorem 3 characterizes the conditions on the
system parameters and on the number of broken links such that
the answer to the above question is positive.

Theorem 3: Let G(n) a stable network, and assume that
L links are removed from it. If either f (H) ≥ c(H) or (1 +
δ)f (L) ≥ c(H), then G(n) converges again to a stable network,
regardless from the number L of removed links. If f (H) <
c(H), (1 + δ)f (L) < c(H), and K(L) ≥ Nth,1 − 1, then G(n)

converges again to a stable network if L ≤ K(H)
2(Nth,2+1) .

Proof: If f (H) ≥ c(H) or (1 + δ)f (L) ≥ c(H), then using
the same arguments as in the proof of Theorem 2 G(n) converges
again to a stable network.

Now assume f (H) < c(H), (1 + δ)f (L) < c(H), and K(L) <

Nth,1. Denote by M the number of micro-colonies in G(n) con-
taining at least one high type bacterium, by K(m) the number
of high type bacteria belonging to the micro-colony m, and by
L(m) the number of links broken in micro-colony m. We have∑M

m=1 K(m) = K(H) and
∑M

m=1 L(m) = L. If L(m) < 1 for
some m, then the micro-colony m is still present in the new net-

(a)

(b)

(c)

(d)

Fig. 1. Possible evolutions of G(n) in the complete information setting. Black
and white cells refer to low and high type bacteria, respectively. (a) f (H) ≥
c(H). (b) (1 + δ)f (L) ≥ c(H). (c) f (H) < c(H), K(L) < Nth,1. (d) f (H) <
c(H), (1 + δ)f (L) < c(H), K(L) < Nth,1.

work, and since m contains high type bacteria, for Theorem 1,
G(n) will converge again to a stable network. If K(m) ≥ Nth,2 +
1 and L(m) <

⌊
K(m)

Nth,2+1

⌋
, where ⌊·⌋ is the largest integer smaller

than the argument, then the micro-colony m is divided into L(m)

component, and at least one of these components has a size
equal to or larger than Nth,2 + 1. Hence, for Proposition 4, such
component is a micro-colony, and since it contains high type
bacteria, for Theorem 1, G(n) will converge again to a stable
network. As a consequence, the minimum number of links to
break such that there might be a possibility that G(n) does not
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converge to a stable network is

Lmin
#=

M∑

m=1

max
{

1,

⌊
K(m)

Nth,2 + 1

⌋}
>

M∑

m=1

K(m)

2(Nth,2 + 1)

= K(H)

2(Nth,2 + 1)
,

where the inequality is valid because if K(m)
Nth,2+1 >1 then max

{
1,

⌊
K(m)

Nth,2+1

⌋}
=

⌊
K(m)

Nth,2+1

⌋
> K(m)

2(Nth,2+1) , whereas if K(m)
2(Nth,2+1) ≤1

then max
{

1,
⌊

K(m)
Nth,2+1

⌋}
=1>

⌊
K(m)

2(Nth,2+1)

⌋
. !

Remark 8: If the number of high type bacteria K(H) is large
compare to the critical size Nth,2, then the number of links to
break to have a possibility that G(n) does not converge again to
a stable network is large.

B. Incomplete Information Setting

In this subsection we analyze the incomplete information
settings.

In the first result, we shows that low type bacteria never break
links, as a consequence a pair of low type bacteria is a micro-
colony. Also, we characterize the conditions under which a pair
of high and low type bacteria and a pair of high type bacteria
are micro-colonies.

Lemma 2: For each low type bacterium i and for each
neighbor j ∈ N (n)

i we have a(n)
ij = 1.

A pair of high and low type bacteria is a micro-colony if and
only if f (L) ≥ c(H).

A pair of high type bacteria is a micro-colony if and only if
f (H) ≥ c(H).

Proof: Because c(L) = 0, low type bacteria always bene-
fit from being linked to other bacteria, hence they always want
to maintain a link. A high type bacterium i obtains a higher
utility being singleton than being paired with a low (high) type
bacterium j if and only if f (L) < c(H) (f (H) < c(H)). In this
case, since there is a positive probability that no additional
bacterium forms a link with i or j before ℓ

(n)
ij > ℓmin, i may

eventually break the link (i, j). !
Remark 9: In the incomplete information setting low type

bacteria never break links but, differently from the complete
information setting, high type bacteria can break links. As a
consequence not all the components are micro-colonies.

An implication of Lemma 2 is that singleton high type
bacteria form unstable links with other singleton bacteria if
f (H) < c(H). In the next proposition we generalize such a
results, and show that all links between a high type bacterium
and another bacterium are unstable if the size of the component
they belong to is below a certain threshold.

Proposition 5: Let M be a micro-colony. If f (H) < c(H) and

|M| < Nth,3
#= c(H)

f (H) + 1 then M does not contain bacteria of
high type.

Proof: We prove the statement by contradiction. Assume
M is a micro-colony that contains high type bacteria and
|M| < Nth,3. Denote by i the first high type bacterium that
linked to the micro-colony, by n the time slot in which this

happened, and by M the resulting micro-colony after the link
formation. Notice that the condition f (H) < c(H) excludes the
possibility that the micro-colony generated from a link between
two high type bacteria, hence M is formed by low type bacteria
except for i. Then

ui(t,G(n))≤ (|M|−1)f (L)−c(H)≤ (|M|−1)f (L)−c(H) < 0,

where the first inequality is valid because i’s maximum util-
ity is achieved when all bacteria in M are directly linked
with i, the second inequality is valid because a micro-colony
can only increase in size, and the third inequality is valid
because |M| < Nth,3. Since there is a positive probability that
no additional bacterium joins the micro-colony M before the
lengths of i’s links are larger than ℓmin, i may eventually
leave M. This implies that M is not a micro-colony. !

Remark 10: We have Nth,3 < Nth,1. Indeed, in the incomplete
information setting a high type bacterium i can form an unstable
link with another high type bacterium, and before i can break
this link other high type bacteria can form direct links with
i. Since i can be directly connected with many high type
bacteria before having the possibility to break the original link,
in the incomplete information setting it is possible to form
smaller micro-colonies containing high type bacteria than in the
complete information setting. Finally, Nth,3 does not depends on
δ because of this possibility of creating many direct links.

Now we investigate the existence of a minimum size of a
component C that guarantees that all the links are stable, i.e.,
such that C is a micro-colony. We consider only the case f (L) <
c(H), because Lemma 2 proves that for f (L) ≥ c(H) all links
are stable.

Proposition 6: If f (L) < c(H) and δ > c(H)−f (L)
c(H) , then there

exists Nth,4( f (L), c(H), δ), increasing in c(H) and decreasing
in f (L) and δ, such that all the components C with size |C| ≥
Nth,4( f (L), c(H), δ) + 1 are micro-colonies.

Proof: If f (L) < c(H) and δ > c(H)−f (L)
c(H) then the utility

of a high type bacterium i belonging to a component C satisfies

ui(t,G(n)) ≥
|C|−2∑

j=0

δjf (L) − c(H) = f (L)
1 − δ|C|−1

1 − δ
− c(H),

where the first inequality is valid because i’s lowest utility is
achieved when all bacteria in M (except for i) have low type,
when they are aligned, and i is located in one extreme of the
line. Hence, ui(t,G(n)) ≥ 0, meaning that i does not break any
link, if

f (L)
1 − δ|C|−1

1 − δ
≥ c(H). (3)

For |C| = 2 inequality (3) is not satisfied because f (L) <
c(H). For |C| → +∞ inequality (3) holds strictly because δ >
c(H)−f (L)

c(H) . The left side of (3) increases in |C|, hence there exists
Nth,4(f (L), c(H), δ) such that for |C| ≥ Nth,4(f (L), c(H), δ) in-
equality 3 holds. Finally, since the left hand side of (3) increases
in f (L) and δ, whereas the right hand side of (3) increases in
c(H), we have that Nth,4(f (L), c(H), δ) increases in c(H) and
decreases in f (L) and δ. !
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Remark 11: Nth,4 represents a critical size for a component
C, above which high type bacteria never leave the component.

Proposition 6 implies that high type bacteria cannot remain
singleton forever if there exists a micro-colony with size at least
Nth,4 − ℓmin + 1, because it eventually happens that ℓmin − 1
bacteria link sequentially to the micro-colony, forming a micro-
colony of size at least Nth,4 that would eventually attract all the
singleton bacteria. This allows us to characterize the structure
of a network that does not converge to a stable network.

Theorem 4: If G(n) does not converge to a stable network,
then G(n) converges to a network in which no high type bac-
terium belongs to a micro-colony and each low type bacterium
belongs to a micro-colony with size lower than Nth,4−ℓmin+1.

Proof: We prove that no high type bacterium will be part
of some micro-colonies by contradiction. Assume the high type
bacterium i belongs to a micro-colony in a generic time instant
n and let (i, j) the first link formed by i. Since a micro-colony
can only grow in size, the utility a singleton high type bacterium
obtains by forming a link with j after time instant n is at least
as high as the utility i achieved when it formed the link with
j, and as a consequence it is higher than the utility it obtains
being singleton. Hence, each singleton high type bacterium, if
it does not join a micro-colony in the meantime, will eventually
meet j (such event happens with positive probability in each
time slot) and form a stable link with it. This contradicts the fact
that G(n) does not converge to a stable network. If a low type
bacterium does not belong to a micro-colony, it will eventually
meet a micro-colony or another low type bacterium (such event
happens with positive probability in each time slot) and form a
stable link. Finally, if a micro-colony of low type bacteria has
a size larger than Nth,4 − ℓmin, then it will eventually happen
that ℓmin high type bacteria link to that colony in subsequent
time slots. Proposition 6 guarantees that the new component is a
micro-colony, contradicting the fact that no high type bacterium
will be part of some micro-colonies. !

Now we analytically derive the conditions on the system
parameters under which the network G(n) converges to a stable
network with probability 1, under which G(n) does not converge
to a stable network with probability 1, and under which the
convergence of G(n) is determined by chance.

Theorem 5: Consider the case ℓmin = 1. Then G(n) converges
with probability 1 to a stable network if and only if either
1) f (H) ≥ c(H), or 2) (1 + δ)f (L) ≥ c(H) and K(L) ≥ 2, or
3) K(H) = 0; whereas G(n) does not converge to a stable
network with probability 1 if and only if f (H)<c(H), K(L) <
Nth,1−1, and K(H) > 0.

Consider the case ℓmin ≥ 2. Then G(n) converges with prob-
ability 1 to a stable network if K(H) ≥ Nth,4 − 2 and K ≥
Nth,4; whereas G(n) does not converge to a stable network with
probability 1 if f (H) < c(H), K < Nth,3, and K(H) > 0.

Proof: If ℓmin = 1, then the evolution of the network G(n)

is as in the complete information case, because a bacterium
that forms a link can break it immediately (at the beginning
of the next slot), before other bacteria can join the component
it belongs to. Hence, Theorem 2 holds.

Now consider the case ℓmin ≥ 2. Assume a high type i links
with a low type j in time instant n. Even though this link is
unstable, a new bacteria k can link with i in time instant m, such

Fig. 2. Possible evolution of G(n) in the incomplete information setting if
f (H) + δ(ℓmin − 1)f (H) + δ(1 + δ)f (L) ≥ c(H). In this case G(n) always con-
verges to a stable network.

that n < m < n + ℓmin. This means that i does not break the
link in time instant n + ℓmin (i.e., when ℓ

(n)
ij < ℓmin), because

it is never convenient to break only parts of the links, and
the link (i, k) cannot be broken. If we iterate this reasoning,
a component of whatever side can be formed before a bacteria
has the possibility to break its links. Hence, if K(H) ≥ Nth,4 − 2
and K ≥ Nth,4, high type bacteria will eventually belong to
micro-colonies, because they can eventually form a component
of size at least Nth,4 and Proposition 6 guarantees that this is a
micro-colony. On the other hand, if there are high type bacteria
in the system (i.e., K(H) > 0), they cannot benefit from linking
together (i.e., f (H) < c(H)), and the total number of bacteria
do not allow to form a component of size at least Nth,3, then
Proposition 5 guarantees that G(n) does not converge to a stable
network with probability 1. !

Remark 12: If theminimum link length is1, then complete and
incomplete information converge under the same conditions.

Remark 13: If the minimum link length is larger than 1, then
in the incomplete information settings bacteria can form large
size components before they have the possibility to break their
links, and this can enable the formation of a micro-colony. As
a consequence, if the population of high bacteria is larger than
the critical size Nth,4, then G(n) always converges to a stable
network with probability 1.

Fig. 2 shows a possible evolution of a network G(n) in the
incomplete information setting with ℓmin = 3. Even though a
high type bacterium i does not benefit from connecting with
two low type bacteria, there is the possibility that other high
type bacteria connect to i’s component before i leaves it, and
this enables the formation of a micro-colony. Notice that the
system parameters in Fig. 2 are the same as in Fig. 1(c), but
in the complete information setting G(n) does not converge to a
stable network.

Finally, we investigate the robustness of a stable network.
Theorem 6: Let G(n) a stable network, and assume that L

links are removed from it.
Consider the case ℓmin =1. If f (H)+δ(ℓmin−1)f (H)+δ(1 +

δ)f (L) ≥ c(H) then G(n) converges again to a stable network,
independently from the number L of removed links. Otherwise
G(n) converges again to a stable network if L ≤ K(H)

2Nth,4
.

Consider the case ℓmin ≥ 2. If K(H) ≥ Nth,4 − 2 and K ≥
Nth,4, then G(n) converges again to a stable network.

Proof: The case ℓmin = 1 is proven as in Theorem 3. The
case ℓmin ≥ 2 is proven using the same arguments as in the
proof of Theorem 5. !
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TABLE I
BASIC SIMULATION SETTINGS

Remark 14: If ℓmin ≥ 2 and the high type bacteria number
K(H) is larger than the critical size Nth,4, then G(n) converges
again to a stable network, regardless from the number of broken
links.

VI. SIMULATIONS

In this Section we present several illustrative results aimed
to understand the essential characteristics of micro-colonies
formation and their dependence on the key parameters of the
system.

We consider the basic settings represented in Table I and we
run several series of simulations. In each series of simulations
we vary the value of a single parameter, and for each value
of the parameter we run Nsym = 1000 simulations to average
the results. A single simulation consists of a maximum of
Nslots = 104 time slots, if the network does not converge to a
stable network before achieving the maximum number of time
slots then the network is considered unstable.

We first analyze the impact of the spread factor δ. In
Fig. 3(a) we plot the empirical convergence probability (top-
left sub-figure), the average convergence time (top-right sub-
figure), the average size of the largest component (bottom-left
sub-figure), and the average diameter of the largest component
(bottom-right sub-figure), for values of δ ranging from 0 to 1.
For both the complete and the incomplete information settings,
if δ is very low then the network does not converge. Indeed,
low type bacteria form micro-colonies anyway, but the largest
micro-colony C has a size so small (about 10) and it is so spread
(DC is about 5) that in the complete information setting no
high type bacteria has an incentive to join any micro-colonies,
whereas in the incomplete information setting high type bac-
teria join temporarily some micro-colonies but then they even-
tually leave. The probability to converge to a stable network
becomes positive for δ > 0.5 in the incomplete information
setting, and for δ > 0.8 in the complete information setting. The
convergence probability in the incomplete information setting
is higher than the convergence probability in the complete
information case because in the incomplete information case
high type bacteria can join a micro-colony even if it is not
currently beneficial for them, and this allow the micro-colony to
grow faster and attract other high type bacteria. Notice that, in
this case, for δ ≥ 0.9 the network converges to a stable network
with probability 1.

Fig. 3(b) shows the impact of the minimum link length ℓmin.
The results for the complete information setting are not affected

Fig. 3. Convergence probability, convergence time, component size, and com-
ponent diameter vs. (a) spread factor and (b) minimum link length.

by ℓmin, indeed Lemma 1 proves that in this case bacteria al-
ways form stable links, regardless of ℓmin. Unlike the complete
information setting, the results in the incomplete information
case are strongly influence by ℓmin. On one hand, if ℓmin = 1
the incomplete information case coincides with complete infor-
mation case, indeed bacteria forming non-beneficial links break
the links immediately. On the other hand, if ℓmin is very large
a high type bacterium waits for a long time before deciding
whether to break its links, and this enables the formation of
micro-colonies with high type bacteria.

Next we study the impact of the signaling mechanism. We
consider a linear signaling mechanism h(x) = 1 + mx, and we
vary the signaling parameter m from 0 to 20: m = 0 means that
the meetings are uniformly distributed, whereas the higher m
the higher the probability that a singleton bacterium is matched
with a bacterium having many links. Fig. 4(a) shows that the
signaling mechanism has a positive effect in the formation of
the micro-colonies: if m is large, then the probability that the
network converges is large, the convergence time is low, and
the size of the component is large. Notice that the component
diameter increases in m; however, this is due to the fact that
the component size increases as well. Since the component size
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Fig. 4. Convergence probability, convergence time, component size, and com-
ponent diameter vs. (a) signaling parameter and (b) ratio of high type bacteria.

increases with a much faster rate than the component diameter,
then we can conclude that a large m results in large and compact
micro-colonies.

Fig. 4(b) evaluates the impact of the ratio of high type
bacteria, ρH . If ρH = 0 the population is formed only by low
type bacteria and the network converges to a stable network
with probability 1. In the complete information, the higher ρH
the lower the probability that the network converges to a stable
network, and as a consequence the lower the size of the largest
component. In the incomplete information the impact of ρH is
more complex. In fact, in the incomplete information settings
two different factors are fundamentally important: the presence
of low type bacteria that form the first micro-colonies, and the
presence of high type bacteria that link to these micro-colonies
and attract further bacteria. As a consequence of this trade-off,
there exists an optimal ratio of high type bacteria (ρH = 0.85)
that maximizes the size of the largest component.

The trade-off between low and high type bacteria is even
clearer in Fig. 5, that represents the average utility that a
bacterium obtains at the end of the simulation. On one hand,
a population of only low type bacteria always converges to a
stable network, but the sizes of the micro-colonies are small

Fig. 5. Average utility for bacterium vs. ratio of high type bacteria.

(a) (b) (c)

Fig. 6. The communities formed by different strains of Pseudomonas aerug-
inosa bacteria: (a) small micro-colonies formed by wild types, (b) no micro-
colonies formed by mutants that cannot produce Psl, (c) large micro-colonies
formed by mutants that overproduce polysaccharide Psl. (a) WTPA01;
(b) #pslD; (c) #Ppsl/PBAD − psl.

and no bacterium adopts a higher production rate which would
result in a larger benefit for all the bacteria belonging to the
same micro-colony. On the other hand, a population of only
high type bacteria never converges to stable network, and the
average utility is very low. There exists an optimal ratio of
high type bacteria (ρH = 0.87) such that the average utility
for bacterium is maximized. This implies that the long term
benefit of a population of bacteria is maximized when the
population is heterogeneous: both low and high type bacteria
play a fundamental role in the formation of communities that
exhibit enhanced antibiotic tolerance.

VII. EXPERIMENTAL EVALUATION

In this section we present a preliminary evaluation of the
proposed model. We performed three experiments using dif-
ferent strains of Pseudomonas aeruginosa, a bacterium widely
used in biofilm research [4]–[6]. In the first experiment we
used the wild type Pseudomonas aeruginosa strain PAO1, in the
second experiment we used the mutant #pslD that is not able to
produce the polysaccharide Psl, and in the third experiment we
used the mutant #Ppsl/PBAD − psl with 1% arabinose added
into the medium that produces larger amounts of Psl than the
wild type strain PAO1. In each experiment bacteria are initially
distributed uniformly over a 67 × 67 µm glass surface that
is under observation and we use an Olympus microscope to
acquire images showing the positions of the bacteria at regular
time intervals.

Fig. 6 displays the three images—one image for each
experiment—that are taken when the total number of bacterial
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(a) (b) (c)

Fig. 7. The communities formed by the strain #Ppsl/PBAD − psl with 1%
arabinose at different time intervals: (a) after 10 h and 30 m from the beginning
of the experiment, (b) after 11 h from the beginning of the experiment, and
(c) after 11 h and 30 m from the beginning of the experiment.

Fig. 8. Comparison between experimental data and the results predicted by
our model, in terms of component size and component diameter vs. time.

visits on the surface reaches 1.5 × 106. Fig. 6(b) shows that no
micro-colonies are formed by mutants that cannot produce Psl;
instead, Fig. 6(c) shows that large micro-colonies are formed by
mutants that overproduce Psl. This type of behavior is predicted
by our model.

Next, we focus on the experiment concerning the mutant
#Ppsl/PBAD − psl with 1% arabinose. Fig. 7 shows the im-
ages taken after 10 hours and 30 minutes, after 11 hours,
and after 11 hours and 30 minutes from the beginning of the
experiment.

From the images taken from 10 hours to 12 hours from the
beginning of the experiment we manually extract the size and
the diameter of the largest component, and we compare them
with the results of our model that are obtained through simu-
lation. For our model we consider the incomplete information
scenario and we tune the parameters in the following way.
Since after 10 hours from the beginning of the experiment the
number of bacteria in the glass surface is slightly smaller than
100 and, due to bacteria replication, after 12 hours the number
of bacteria is slightly larger than 100, then we set K = 100.
Since we consider a single Pseudomonas aeruginosa strain,
#Ppsl/PBAD − psl with 1% arabinose, that produces larger
amounts of Psl than the wild type strain PAO1, then we set
ρH = 1. All the other parameters are left as in Table I, with
the exception of the spread factor and the minimum length
of a link that are manually tuned to δ = 0.95 and ℓmin = 15,
respectively, in order to minimize the distance between the
experimental results and the results provided by our model. We
run Nsym = 100 simulations to average the results associated
to our model. Fig. 8 shows that the results predicted by our
model in the incomplete information scenario are very close to
the experimental data.

We remark that the results presented in this section are
based on few experiments, hence they must be interpreted as

a preliminary evaluation of the proposed model. As a contin-
uation of this study, we plan to validate our model collecting
a large quantity of experimental data, in which experiments
will be performed in controlled environments to improve their
repeatability, and will be repeated for several times to obtain a
statistically significant number of data.

VIII. CONCLUSION AND FUTURE WORK

We proposed a parametrizable dynamic network formation
game model to capture the dynamic interaction among bacteria
in the formation of micro-colonies. We rigorously characterized
some of the key properties of the network evolution depending
on the parameters of the system, in both the complete and the
incomplete information settings. In particular, we derived the
conditions on the system parameters under which the network
G(n) converges to a stable network with probability 1, under
which G(n) does not converge to a stable network with proba-
bility 1, and under which the convergence of G(n) is determined
by chance. Importantly, our study does not only characterize
the properties of networks emerging in equilibrium, but it also
provides important insights on how the network dynamically
evolves and on how the formation history impacts the emerging
networks in equilibrium. This analysis can be used to develop
methods to influence on-the-fly the evolution of the network,
and such methods can be useful to design biofilm therapeutic
strategies.

As a continuation of this study, we plan to validate our model
collecting a large quantity of experimental data. We will use
an approach similar to the one adopted in Section VII for the
preliminary evaluation, i.e., we will record the whole history
of formation of micro-colonies since the beginning of each ex-
periment. We will use single Pseudomonas aeruginosa strains,
as well as a mixture of different strains. The experiments
will be performed in controlled environments to improve their
repeatability, and will be repeated for several times to obtain a
statistically significant number of data. The collected data will
be used to tune the parameters of our model, to compare the real
results with the results predicted by our model, and possibly to
improve the model itself, for example including factors (e.g.,
the bacteria replication) that have been neglected in the current
model.
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