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Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-

permeating peptides with important functions in innate host defense. In this

short review, we provide a historical overview of AMPs, summarize previous

applications of machine learning to AMPs, and discuss the results of our

studies in the context of the latest AMP literature. Much work has been

recently done in leveraging computational tools to design new AMP candi-

dates with high therapeutic efficacies for drug-resistant infections. We show

that machine learning on AMPs can be used to identify essential physico-

chemical determinants of AMP functionality, and identify and design peptide

sequences to generate membrane curvature. In a broader scope, we discuss the

implications of our findings for the discovery of membrane-active peptides in

general, and uncovering membrane activity in new and existing peptide

taxonomies.
1. Organization of review
In recent work, we have established a computational model that can predict and

detect membrane-permeating activity in arbitrary peptide sequences by learn-

ing from a dataset of antimicrobial peptides (AMPs) [1]. We use the results of

this study to examine critically the nature of AMPs and the process of machine

learning. In this review, we explore the impact of these experimental studies in

the context of prior applications of machine learning to the synthesis and design

of novel AMPs; another recent invited mini-review contextualizes the compu-

tational aspects of the study [2]. We begin with a brief historical overview of

AMPs and a summary of previously developed machine learning tools for

AMP discovery, and show how our work fits into and contrasts with this

body of work. In particular, machine learning is proficient at discovering

‘known unknowns’ by extrapolating from known AMP sequences to unknown

ones. We show that it is possible to use machine learning as an engine to dis-

cover ‘unknown unknowns’, by using it reflexively to identify limitations in

existing assumptions or classifications. Since machine learning allows us to

quantify the key properties of peptides that enable them to permeate mem-

branes, in principle, it contains information about the physico-chemical

mechanism of membrane permeation. In practice, it can prove difficult to

extract this information due to inherent difficulties in translating machine learn-

ing results into governing physical principles. We suggest an approach to

circumvent these difficulties by using machine learning to guide calibrating

experiments to reveal the physico-chemical determinants and mechanisms of

membrane permeabilization. Results of these findings are critically compared

with general trends and principles identified in the current literature on the
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biophysics of membrane curvature, amphiphilicity and AMP

mechanisms. Finally, we describe the explanatory potential of

this tool and conclude with an outlook on future applications.

We stress that this review is not meant to be a comprehensive

review on the details of machine learning techniques, but

rather highlights a recent surprising application of machine

learning to understand how the physical chemistry of peptide

sequences relates to the geometry of membrane permeation.
(b)

(c)

(d)

Figure 1. AMPs and their mechanisms of action. (a) Examples of cationic AMPs:
LL-37 [18] (i, PDB ID: 2K6O), magainin [19] (ii, PDB ID: 2MAG) and melittin [20]
(iii, PDB ID: 1MLT, 2MLT). Cationic residues are coloured blue and hydrophobic
residues are coloured white. Structures were taken from the Protein Data
Bank and visualized in VMD. Proposed mechanisms of AMP antimicrobial activity
include the ‘barrel-stave’ model (b), the ‘carpet’ model (c) and the ‘toroidal-pore’
model (d ). Reproduced with permission from [5,14,21].
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2. Introduction to antimicrobial peptides
AMPs are essential components of innate host defense [3–8].

As of today, over 2000 natural and synthetic AMPs have been

discovered and characterized [9–12]. While these hetero-

geneous peptide-based broad-spectrum antibiotics span an

enormous diversity of sequences and secondary structures

[3,8], early studies have identified common characteristics

among AMPs. They tend to have short amino acid sequences

(,50 amino acids), net cationic charge (þ2 to þ9) and amphi-

philicity [3–8]. AMPs are often divided into three classes:

a-helical AMPs [13,14], b-sheet AMPs [15] and extended

linear peptides enriched with specific amino acids [16,17].

While AMPs in general are amphiphilic with segregated

groups of polar and hydrophobic residues, a large class of

AMPs can form a-helical structures that have polar (charged)

and hydrophobic residues arranged onto opposite faces along

the helical axis, thus creating facial amphiphilicity (figure 1a).

This unique presentation of residues is often described as

being ‘amphipathic’.

In vitro experiments suggest that AMPs generally function

by selectively disrupting microbial membranes. In theory, this

leads to cell death due to the loss of electrochemical gradients,

reduction in resistance to osmotic stress, leakage of cellular

contents and disruption of metabolic processes [4,8]. This bac-

tericidal activity typically is dependent on interactions

between AMPs and bacterial membranes [22], which has

been demonstrated using a variety of experimental techniques,

including X-ray scattering, nuclear magnetic resonance

(NMR), dye leakage assays, electron microscopy and circular

dichroism [8]. Different models describing membrane per-

meation have been proposed, including the ‘barrel-stave’

model, the ‘carpet’ model and the ‘toroidal-pore’ model

among others (figure 1b–d). In the ‘barrel-stave’ model,

amphipathic a-helical AMPs self-assemble into cylindrical

bundles that are embedded perpendicularly into the cell

membrane to form pores [23–27]. Within the membrane, the

hydrophobic faces of the individual AMPs are oriented

towards the hydrophobic interior of the bilayer, and the hydro-

philic faces are oriented towards one another to form the

lumen of the aqueous pore (figure 1b) [5,14]. In the ‘carpet’

model, AMPs adsorb onto the cell membrane in a parallel

orientation. Once a critical local concentration is reached, the

peptides disintegrate the membrane via micellization

(figure 1c) [5,28–32]. Here, pore formation does not occur,

unlike the ‘barrel-stave’ model. In the ‘toroidal-pore’ model,

AMPs insert perpendicularly into the membrane to form a

pore [21,33] but differs from the ‘barrel-stave’ model in that

the membrane is integrated into the pore lining, forming a

continuous interface with the peptides (figure 1d) [5,34,35].

The selectivity of AMPs for bacterial membranes over

eukaryotic membranes is generally believed to result from

the compositional differences between their membranes
[3,4,8]. More specifically, bacteria membranes contain large

amounts of anionic lipids (e.g. phosphatidylglycerol and

cardiolipin), while eukaryotic membranes contain mostly

zwitterionic lipids (e.g. phosphatidylcholine and sphingo-

myelin) [36–38]. In human cells, cholesterol is particularly

important [39]. Indeed, in vitro experiments have shown

that the presence of anionic lipids results in increased

membrane disruption and permeabilization by cationic

membrane-active antimicrobials [3]. However, while the exist-

ence of anionic lipids is a necessary condition for permeation

by AMPs, it is not a sufficient one. Bacterial membranes also

contain high amounts of negative intrinsic curvature lipids,

such as phosphatidylethanolamine and cardiolipin, which pre-

dispose their membranes to poration [39–44]. In the simplest

models, AMPs first interact with bacterial cells by binding

electrostatically to their membrane surfaces, during which

the cationic residues of the peptide bind to the anionic lipid

head groups and other anionic surface components. After

adsorbing onto the membrane with its helical axis parallel to

the surface, the AMP partitions into the lipid bilayer,

driven primarily by hydrophobic interactions between its

hydrophobic residues and the membrane core. The amphi-

pathic nature of AMPs allows for this direct interaction with

the cell membrane, which can then lead to membrane
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permeation and cell death [28]. In fact, the majority of early

experimental studies conclude that membrane permeation

underlies the primary mechanism of action of AMPs.

We will revisit this question when we discuss our machine

learning results.
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3. A. brief history of machine learning on AMPs
3.1. Machine learning fundamentals
Machine learning leverages expertise from mathematics,

statistics and computer science to learn from data. Machine

learning models can be divided into supervised and unsuper-

vised methods. Supervised learning builds a prediction

model based on existing ‘ground truth’ data, which consists

of actual measured outcomes for each object of interest.

In turn, each object can be characterized by any number of

input variables or ‘features’. The presence of the outcome

variable guides the learning process. Supervised models

will take the ‘features’ as input and output a prediction,

which can be a binary, categorical or continuous variable.

By contrast, unsupervised learning approaches do not rely

on measurements of outcome and rely purely on the input

‘features’ of the objects. Unsupervised approaches must

infer a function to discover hidden trends in the data. The

majority of established learning methods revolve around

supervised learning but the literature on unsupervised

methods is growing quickly. Most of the learning methods

discussed in this review centre upon supervised learning

on validated datasets of AMPs.

3.2. Simultaneous maturation of machine learning
methods and AMP studies

The mathematical and statistical framework for machine

learning has existed for centuries, far before computers

were invented. Ideas and elements most recognizable today

in machine learning, including Bayes’ Theorem, principal

component analysis, multiple linear regression, least-squares

fitting and Markov chains, were established by mathemati-

cians before 1950 [45]. Alan Turing’s pioneering work on

the Turing machine in 1950 [46] led to the development

of the first artificial neural network (ANN) [36]. After the

invention of the modern computer, research in machine

learning exploded with the development of many of the

modern methods used today, including partial least-squares

regression, recurrent neural networks, hidden Markov

models (HMMs), support vector machines (SVMs) and

random forests (RFs) [45]. Most recently, advances in scalable

training algorithms and the availability of large datasets has

spurred a resurgence of interest in ANNs with deep network

architectures capable of tasks including handwriting recog-

nition [47], cancer diagnosis [48], HIV classification [49],

facial recognition [50], spam filtering [51] and quantum

chemistry [52]. In 2016 the ‘AlphaGo’ ANN rose to promi-

nence by beating a 9-dan human grand master at the

ancient board game Go [53]. As machine learning methods

matured in the latter half of the century, the same was occur-

ring to the field of AMPs. As described in §2, decades of

biophysical studies centred upon understanding AMP mech-

anisms of action and sequence rules gradually filled the

literature. The advent of high-throughput screening coupled

with decades of experimental data allowed for curation of
large annotated datasets [11]. In the last 10–15 years, the

focus of machine learning has shifted to an intensely data-

driven approach. Significant advancements in computational

power and easy-to-use statistical learning tools has made

supervised machine learning a viable strategy for leveraging

large datasets for the high-throughput and high-accuracy

classification of AMPs. Typical readouts from biophysical

assays on AMPs include calculations of minimum inhibitory

concentrations, minimum bactericidal concentrations and

binding affinities. These quantities, coupled with sequence

information about AMPs, allow for the training of various

supervised learning models using peptide sequence infor-

mation as an input. Before this era, methods for de novo
AMP discovery relied on long-standing bioinformatics

methods, including sequence alignment and homology

modelling for prediction of biological activity. Now, the

convergence of innovations in machine learning models,

the presence of modern computational tools, and the

availability of high-quality datasets has enabled the machine

learning-aided design of AMP candidates.

3.3. Recent applications of machine learning to AMP
classification and discovery

The diversity of AMP sequences and structures coupled with

the time and expense associated with experimental design,

production and testing of AMP candidates precludes compre-

hensive experimental screening of peptide sequence space.

Thus, the earliest machine learning models were quantitative

structure–active relationship (QSAR) models that proved

useful in efficient screening and optimization of a small

number of promising sequences for experimental evaluation.

QSAR models seek to use physico-chemical descriptors to

predict biological activity of a molecule that is typically

expensive and/or time consuming to measure or calculate.

In contrast, many physico-chemical properties of a peptide

can be inexpensively computed directly from its amino acid

sequence [54,55]. Models are trained and validated over

experimentally characterized databases, then employed in

high-throughput in silico screening to identify novel candi-

dates with the desired biological activity. This approach

relies on statistical learning to infer empirical relationships

between physico-chemical properties and biological activity,

and is, therefore, contingent on an underlying relationship

between (some subset of) the descriptors, the capacity of

the machine learning model to discover and encode this

relationship in a mathematical expression, and sufficiently

large and diverse training databases to produce robust

predictive models [45,54,56].

QSAR models for computational AMP design have been

developed using a variety of statistical learning approaches.

The majority of prior AMP machine learning studies have

tended to focus on either optimizing classification accuracy

of AMPs or identifying potent AMP candidates with low

minimum inhibitory concentrations. In one of the first

applications of machine learning to AMPs, Lata et al. [57]

developed a QSAR AMP classification tool based on ANN,

SVM and quantitative matrix models based on unique

motifs found in the C- and N-terminal residues of known

AMPs. In 2008, Chersakov et al. used high-throughput screen-

ing methods to train an ANN model on the measured

antimicrobial efficacies of thousands of nine-residue peptides

to discover potent antimicrobials that were potent against
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multi-drug-resistant bacteria [58]. Fjell et al. [59] published a

2008 study using HMMs to screen for AMPs in the bovine

genome, which led to the discovery of a previously unknown

AMP and confirmed the absence of a-defensins. In a similar

vein, this group later developed an ANN model in 2009 to

screen a larger number of synthetic AMP candidates, charac-

terizing 18 sequences with high antimicrobial efficacy against

multi-drug-resistant bacteria [54]. In 2011, Wang et al. [60]

used a combination of sequence alignment and feature selec-

tion methods to design a computational model to more

accurately classify AMPs. Similarly, Torrent et al. [61] trained

an eight-descriptor SVM to classify AMPs with 75–90% accu-

racy while taking into account new factors like peptide

aggregation. In 2013, Maccari et al. [62] used RF models to

design and validate the antimicrobial activity of two natural

peptides and one peptide with non-natural amino acids,

and Xiao et al. [63] designed a two-level classifier to first clas-

sify peptide sequences as an AMP, and then sub-classify

them into 10 functional AMP categories. In 2015, Giguère

et al. [64] used a kernel method based on graph theory to

train a 100 peptide dataset based on multiple measures of

bioactivity to predict novel candidates. Most recently in

2017, Schneider et al. [65] reported the first application of

unsupervised–supervised two-step models to classify

AMPs. They used self-organizing maps to apply nonlinear

dimensionality reduction to the training data, which were

then used as an input for a supervised neural network

model. Together, these studies highlight a diversity of

methods and approaches that have been used to classify

and design AMPs with great success.
4. A machine learning model that detects
membrane activity

In our recent work, we aimed to use machine learning not to

directly discover and design AMPs with enhanced potency

and antimicrobial efficacy, but rather to help glean under-

standing about the relationship between AMP sequence

and function. Rather than optimizing for antimicrobial

efficacy, we trained and interrogated a machine learning

model to determine which physico-chemical characteristics

were most defining of ‘antimicrobial-ness’. Furthermore, we

focused on a-helical AMPs, which have structures common

to many peptides and proteins. To do this, we collated a data-

set of known, experimentally characterized AMPs from the

antimicrobial peptide database [11], and a separate dataset

of a-helical non-antimicrobial decoy peptides in the same

length range drawn from the Protein Data Bank of Trans-

membrane Proteins (PDBTM) [66]. The selection of the

decoy dataset is consistent with the methodology used in

prior machine learning studies [61,67]. The peptides were col-

lated without regard to their organism of origin. From these

datasets, we developed a QSAR model to differentiate

between antimicrobial and non-antimicrobial a-helical

peptide sequences. Using this model as a search tool, we car-

ried out a directed search of the unknown peptide sequence

space to find new antimicrobial candidates evolutionarily

distant from known AMP sequences, and combined our

computational modelling with calibrating experiments to

elucidate the physico-chemical basis for AMP function.

Surprisingly, we found that our classification metric did

not, as we had anticipated, correlate with antimicrobial
efficacy, but instead correlated with the capacity to permeate

cell membranes [1]. While antimicrobial activity is often

associated with membrane permeation ability, these two

properties are inherently distinct from one another and are

not coextensive. The results here imply that membrane

activity, while a common feature for AMP action, may not

be the main mode of antimicrobial action. Interestingly, mem-

brane permeation has been previously demonstrated to be

highly dependent on the generation of membrane curvature

[68–71]. Thus, our finding dovetails with recent work

[72,73] showing how diverse sequences from drastically

different peptide families can generate similar magnitudes

of membrane curvature. These findings also agree nicely

with studies on the phase behaviour of AMP–lipid

complexes, and biophysical mechanisms of membrane curva-

ture generation. More generally, our model not only enables

identification of new AMP sequences, but also facilitates

recognition of previously undetected membrane activity in

existing protein families.
4.1. Computational model
We constructed and trained a SVM classifier on a dataset of

286 antimicrobial and 286 decoy a-helical peptides. We

used the Python package propy [74] to generate physico-

chemical descriptors from the peptide sequences, and the

package scikit-learn [75] to create the SVM classifier. We

began with an initial broad panel of 1588 physico-chemical

descriptors [56,67,74,76,77], including simple peptide metrics

of length, charge, hydrophobicity, residue composition and

more complicated metrics such as autocorrelation, physico-

chemical compositions and sequence order. These descriptors

can be quickly calculated directly from the peptide sequence

independent of experimental measurement. We rationally

selected the k ¼ 12 most highly predictive descriptors of the

original 1588 descriptors identified using the L1-norm

sparse variable selection approach of Bi et al. [78] (table 1).

The linear SVM trained over this subset of variables possesses

as good or better predictive performance and more intuitive

interpretability than those employing entire descriptor

ensemble and/or implementing nonlinear kernels. The

trained linear SVM based on a training set of 486 peptides

and a validation set of 86 peptides had a prediction accuracy

of 91.9%, a specificity of 93.0% and a sensitivity of 90.7%. The

SVM takes an arbitrary peptide sequence as an input, and out-

puts s, the distance of the peptide to the (k 2 1)-dimensional

SVM hyperplane that separates the antimicrobial and

non-antimicrobial sequences. By construction, s can also be

converted into a probability of positive classification, in

which a larger positive value of s denotes higher confidence

of antimicrobial activity, and a large negative value denotes

a higher confidence of lack of antimicrobial activity. Using

the SVM as a screening tool, we conducted a directed search

of two regions of the unknown peptide sequence space: pep-

tides close in homology to known AMPs, and those far in

homology to known AMPs. For all candidates, we also calcu-

lated their helicity in addition to s and homology to known

AMPs (minHomologyAMP). Because an exhaustive screen of

all possible peptides of length n is not feasible, we decided

to screen peptides with lengths of 20–25 amino acids, which

corresponds to the most common lengths of membrane-

spanning AMPs [4,8]. We also directed our search towards

ideal candidates with large positive values of s. To that

http://rsfs.royalsocietypublishing.org/


Table 1. Subset of 12 bagged descriptors identified by the L1-SVM variable selection procedure. For each descriptor we provide a description of its physical
interpretation [77], and its weight in the linear SVM trained over the training data employing only these 12 descriptors. Positive (negative) weights correspond
to a positive (negative) association of the descriptor with antimicrobial activity, and the magnitude of the weight indicates the relative importance of the
Z-scored descriptor in the classification prediction.

rank descriptor physical interpretation
SVC
weight

1 netCharge net charge of peptide 0.80

2 tG
2 length normalized sequence order coupling number measuring physico-chemical correlations between residues

separated by two positions (i, i þ 2) measured by the Grantham chemical distance matrix [79,80]

0.48

3 pG
29 PseAAC generalization at tier k¼ 9 measuring pairwise correlations of the physico-chemical properties of

residues separated by nine positions (i, i þ 9) measured by the Grantham chemical distance matrix [79,80]

0.36

4 SolventAccessD1025 fraction of the peptide length containing 25% of the buried residues fA,L,F,C,G,I,V,Wg 20.24

5 pc(M,K) relative fraction of M residues to K residues 20.21

6 pG
50 PseAAC generalization at tier k¼ 30 measuring pairwise correlations of the physico-chemical properties of

residues separated by 30 positions (i, i þ 30) measured by the Grantham chemical distance matrix [79,80]

0.20

7 AE fraction of contiguous AE residue pairs 0.18

8 tG
4 length normalized sequence order coupling number measuring physico-chemical correlations between residues

separated by four positions (i, i þ 4) measured by the Grantham chemical distance matrix [79,80]

20.17

9 LW fraction of contiguous LW residue pairs 0.17

10 NK fraction of contiguous NK residue pairs 0.13

11 DP fraction of contiguous DP residue pairs 20.12

12 FC fraction of contiguous FC residue pairs 20.04
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end, using Monte Carlo sampling, we randomly mutated

AMPs in the size range of interest, and accepted or rejected

sequences based on the Metropolis criterion

pacc ¼ minf1, exp(Ds=TÞg, where Ds ¼ strial � scurrent and

T ¼ 0.8 is an effective temperature [81–83]. Then, to identify

optimal candidates, we applied multi-objective optimization

to our sequence map. Specifically, employing helicity, s and

minHomologyAMP as optimization criteria, we constructed a

‘Pareto frontier’ from our candidate sequences defined as the

subset of sequences not strictly dominated by any other in

all three of these metrics [84,85]. In other words, sequences

away from the frontier are non-optimal in the sense that

better sequences exist with simultaneously higher helicity,

larger s and smaller minHomologyAMP, whereas for those on

the frontier no other sequences exist for which all three of

these metrics can be improved simultaneously—improve-

ments in any one are necessarily accompanied by

diminishment in at least one other. Full details of the compu-

tational model are found in Lee et al. [1].
4.2. The support vector machine model detects
membrane activity rather than antimicrobial
efficacy

Informed by our computational model, we continued to

explore the relationship between AMPs and their purported

modes of activity. Traditionally, the assessment of antimicro-

bial activity is accomplished in vitro by using the minimum

inhibitory concentration (MIC) assay, which determines the

lowest concentration of an agent needed to inhibit growth

of a specific bacteria, and correspondingly, its efficacy against

that bacteria. Using a database of MIC values for 478 AMPs
against Staphylococcus aureus, we calculated the s values for

each peptide and plotted them against their reported MIC

values. We found no correlation between s and MIC

(RSpearman ¼ 20.060 [20.154, 0.034], p ¼ 0.187) (figure 2a)

[1]. This lack of correlation of antimicrobial efficacy with dis-

tance to the hyperplane of known AMPs can be explained by

a superposition of membrane activity with other multiplexed

functions. Analysis of the literature suggests that the majority

of the known AMPs we tested are compounds that have other

bactericidal activities in addition to membrane penetration.

For example, buforin is known to bind intracellularly to

DNA [86], and indolicidin enters bacteria and inhibits DNA

synthesis [87]. In addition to membrane permeation, pleuro-

cidin inhibits bacterial macromolecular synthesis [88], and

mersacidin inhibits peptidoglycan synthesis [89]. Several

AMPs like the cathelicidin LL-37 also have immunomodula-

tory activities alongside the ability to kill bacteria via

membrane permeation [90,91]. Upregulation of the immune

system can enhance the killing ability of a peptide, thereby

leading to increased antimicrobial potency. Here, we find

several cases of peptides that have extremely low values of

MIC (high potency) and have low or negative values of s

assigned by our classifier (figure 2a). Thus, one might

imagine that this deviant antimicrobial potency of an AMP

results from a superposition of multiple contributing effects.

The above limitation in AMP analysis also highlights a gen-

eric problem with machine learning approaches: classifier

accuracy does not always straightforwardly translate to

human understanding of the underlying mechanisms of

action. Although it is known that AMPs can have immuno-

logically relevant activity outside of membrane activity,

there is currently no general way to identify AMPs with

additional functions. This has been a salient problem in the

http://rsfs.royalsocietypublishing.org/
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Figure 2. The SVM detects the ability of peptides to generate NGC. (a) We observe a lack of correlation between distance to margin s and antimicrobial potency
(MIC) of known AMPs against S. aureus (RSpearman ¼ 20.060 [20.154, 0.034], p ¼ 0.187). (b) Using SAXS, we observe that test peptides derived from machine
learning generate NGC. (i) Shows the 3D topology of a Pn3m cubic phase induced by test peptides in model membranes. (ii) Illustrates the concept of NGC with
positive curvature (þ) in one principal direction and negative curvature (2) in the orthogonal direction. (c) We find that s correlates strongly with the ability to
generate membrane curvature (RSpearman ¼ 0.653 [0.234, 0.891], p ¼ 0.006). Adapted from data in [1].
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field of AMPs. Thus, we proposed a way to identify candi-

date sequences with multiplexed functions, but doing so

requires some understanding of the SVM parameter s.

Since membrane activity is a common mode of AMP activity,

we hypothesized that the SVM has learned to recognize

not antimicrobial activity directly, but membrane activity

as the discriminant between AMPs and decoys in the

training data.

Using the trained classifier as a guide, we designed

calibrating experiments to test this hypothesis. From the

ensemble of peptide sequences screened by the classifier,

we selected and synthesized 16 peptide candidates with

varying homologies to known AMPs that were proximal to

the Pareto frontier. We characterized their activity using anti-

microbial assays and small-angle X-ray scattering (SAXS)

with artificial membranes. When candidate peptides were

incubated with artificial membranes in the form of small uni-

lamellar vesicles (SUVs), we observed a topological transition

from lipid vesicles to liquid-crystalline cubic phases rich in

negative Gaussian curvature (NGC) (figure 2b). Most impor-

tantly, we found that s correlated strongly with a peptide’s

ability to generate negative Gaussian membrane curvature

(RSpearman ¼ 0.653 [0.234, 0.891], p ¼ 0.006) (figure 2c) [1].

This provides experimental support for our assertion that

the machine learning classifier has learned to discriminate

peptides based on their membrane activity, discovering and

encoding a relationship between the 12 physico-chemical
descriptors used to train the classifier (table 1) and an

emergent structural capacity to induce NGC.
4.3. Negative Gaussian curvature
To understand how peptides can generate negative Gaussian

membrane curvature, we provide a brief overview of the phy-

sics of membrane curvature and deformation processes. Cell

membranes are fluid bilayers containing two leaflets that can

stretch and deform. Although cell membranes exist in three

dimensions, they are better visualized as a curved two-

dimensional surface. At any given point on the surface, the

curvature can be defined by a plane tangent to that point.

Any plane orthogonal to this tangent plane can intersect

the surface with some curvature value c ¼ 1/R defined by

the radius of curvature R. Given all possible orthogonal

planes, the two that give the maximal and minimal curvatures

are defined as c1 ¼ 1/Rmin and c2 ¼ 1/Rmax, respectively.

These are called the two principal curvatures, and in combi-

nation, can be used to describe the shape of the surface at

that point. Mathematically, the arithmetic mean of these two

principal curvatures is the mean curvature H ¼ 1
2 (c1 þ c2),

and the product of the two principal curvatures is the

Gaussian curvature K ¼ c1c2 [92]. Curvature can be positive

or negative, however, when describing a membrane mono-

layer, the sign of curvature is conventionally defined by the

direction of bending. Positive curvature is defined by bending
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of the monolayer to form a convex hydrophilic surface (such as

the outside of a spherical cell), while negative curvature is

defined as the bending of the monolayer to form a concave

hydrophilic surface (such as on the neck of a budding vesicle)

[69,93,94] (figure 2b). Furthermore, positive Gaussian (‘dome-

like’) curvature, K . 0, results from principal curvatures of

the same sign, while negative Gaussian (‘saddle-like’) curva-

ture, K , 0, results from principal curvatures of the opposite

sign (figure 2b). Membrane curvature can also be influenced

by the geometry and packing behaviour of the various phos-

pholipids present in the bilayer, which together define the

equilibrium shape of the membrane. Thus, deformation of

the membrane from equilibrium exacts an energetic penalty

that can be calculated from curvature changes and mechanical

properties of the membrane.

Peptides and proteins can generate membrane curvature

through several mechanisms, including membrane parti-

tioning and insertion [95], membrane scaffolding [39,96],

curvature sensing [97], molecular crowding [98,99] and

membrane wrapping [100,101]. Often, the mechanism of

membrane deforming peptides and proteins involve one or

more of the above. The specific structure of amphipathic

a-helical AMPs, with separate polar and hydrophobic faces,

facilitates the interactions associated with these mechanisms.

The hydrophobic AMP domains interact with the hydro-

carbon chains in the lipid core, driving positive curvature

generation via steric impingement in the membrane. Simul-

taneously, electrostatic interactions between the cationic

groups of the peptide and anionic lipid head groups drive

negative curvature by inducing wrapping of the membrane.

The variation in membrane disruption and curvature

effects among amphipathic cationic a-helical AMPs has been

attributed to differences in the charge distribution and sizes

of the polar and hydrophobic faces of their helices [102,103].

A large number of studies have explored correlations between

the relative sizes of the polar and hydrophobic faces with bio-

logical effects, such as cell lysis [102–107]. Specifically, lytic

antibacterial helical peptides that are known to destabilize

membranes can often be described as having an inverted

wedge-shaped cross-section, with a narrow polar face to

form the apex, and a wide hydrophobic face to form the

base [4,102,104,105]. A large hydrophobic face allows the pep-

tide to deeply penetrate into the membrane, perturbing the

packing of the bilayer core. This can lead to membrane thin-

ning and cause the membrane to become more susceptible to

curvature deformations as a result of reduced bending

moduli [21,108–110]. Moreover, previous work has found

that increasing the bulkiness or angle subtended by the hydro-

phobic face further increases the ability of the peptide to

destabilize membranes and cause lysis [102,104,111]. For

peptides with narrow polar faces and wide hydrophobic

faces, we expect the hydrophobic insertion effects to dominate,

resulting in strong positive curvature. Conversely, for pep-

tides with wide polar faces and narrow hydrophobic faces,

electrostatic interactions between the cationic residues and

anionic lipid head groups cause membrane wrapping (negative

curvature) to dominate over the positive curvature from

hydrophobic insertion.

This ability of a cationic amphipathic AMP to induce both

positive and negative curvature in mutually orthogonal direc-

tions at a single location results in NGC, which is the type

of curvature that is topologically necessary for membrane

destabilization processes. In fact, AMPs have been shown to
destabilize membranes through a variety of modes, including

pore formation [23,112,113], blebbing [114,115], budding

[116] and vesicularization [117,118], all of which require

NGC. As AMPs vary in relative amounts and distributions

of cationic charge and hydrophobicity, and thus, can yield

different levels of negative and positive curvature, an optimal

balance among these properties would enable efficient gener-

ation of NGC. For instance, for many AMPs, the angle

subtended by the polar face tends to be �1008 and the ratio

of cationic/anionic residues is approximately 4–5 [104].

While the actual form of membrane destabilization is

dependent on the physical chemistry of the specific AMP

and the target membrane, AMP-induced disruption of bac-

terial membranes has been found to correlate with the

ability of the peptides to generate NGC [70]. Synchrotron

SAXS is an efficient way for measuring NGC in lipid mem-

branes. Recent work has used SAXS to map out the phase

behaviour of lipids complexed with membrane deforming

peptides and proteins. For example, three families of defen-

sins, a class of AMPs, were assayed for their induction

of membrane curvature deformations by incubating the pep-

tides with SUVs composed of binary and ternary mixtures of

phospholipids. By tuning the phospholipid compositions of

the SUVs, one can model the lipid compositions of prokaryo-

tic and eukaryotic membranes. For compositions mimicking

bacterial membranes, defensins were found to restructure

SUVs to liquid-crystalline cubic phases, which are character-

ized by a minimal surface with NGC at every point. [70,119].

The ability to generate NGC has also been observed for

cell-penetrating peptides [71], natural and synthetic AMPs

[120,121] and viral fusion proteins [72,122]. Taken together,

these results suggest that the generation of NGC is not

only a feature of AMPs, but a common root mechanism for

membrane destabilizing processes in general.

4.4. Metrics that define membrane-permeating
peptides

Having summarized different modes of NGC generation, we

now examine the details of the machine learning model in the

context of prior work on AMP amphiphilicity, cationicity,

hydrophobicity and NGC. This analysis is facilitated by our

use of sparse variable selection techniques to reduce the

number of descriptors to just 12, and our selection of a

linear SVM model in which the separating hyperplane

exists in this 12-dimensional space. Deriving interpretability

from classifiers containing large numbers of descriptors

and/or performing nonlinear classification can be very chal-

lenging. Remarkably, our analysis shows that the machine

learning model efficiently learned a long-observed but

poorly quantified characteristic of AMPs: facial amphiphil-

icity (often termed amphipathicity for helical AMPs). The

training dataset for our SVM contains many amphipathic

AMPs, as extensively summarized in the literature [28,123].

Our SVM, using physico-chemical descriptors independent

of geometry, was able to illuminate the importance of amphi-

pathicity in predicting whether peptides are membrane active

and is implicitly defined in our classification scheme. From

the original set of 1588 descriptors, we obtained a subset of

12 descriptors for our SVM that were most predictive for anti-

microbial activity based on sparse variable selection

approaches (table 1), and four out of these 12 descriptors

directly enforce amphiphilicity. Three of the four descriptors
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(nos. 2, 3, 6 in table 1) have positive weights in the SVM

model indicating that any two residues radially spaced

apart by two, nine and 30 positions along the helical wheel

likely have opposite amino acid character (e.g. polar and

hydrophobic) in candidates predicted to be highly membrane

active, while the fourth (no. 8) has negative weight indicating

that residues spaced apart by four positions along the helical

wheel likely have similar character (e.g. polar and polar or

hydrophobic and hydrophobic). The four descriptors are

illustrated in the helical wheel diagram in figure 3a. Accord-

ingly, our SVM model discovers, detects and enforces

amphipathicity in its classification process, which results in

membrane-active candidates with inherent amphipathicity.

Using a quantitative metric, the mean hydrophobic moment

(magnitude of the vector hydrophobic moment), we can cal-

culate the amphipathicity of our test peptides that are near

the Pareto frontier. Using the Eisenberg consensus scale

[124], we calculate the mean hydrophobic moment of the 16

test peptides from machine learning. We find they fall in

agreement with the expected amphipathicities of known

AMPs as we show in figure 3b. To explore correlations with

membrane activity, we compared the hydrophobic moment

and the magnitude of NGC produced by the peptides

from SAXS. The Spearman rank correlation between

mean hydrophobic moment and NGC is RSpearman ¼ 0.680

[0.259, 0.856], p ¼ 0.0038, indicating that amphipathicity

is indeed an important determining factor in the ability to
generate NGC (figure 3c). This makes sense because

the amphiphilic nature of the molecule is one of the structu-

ral features that enables its interaction with membranes, as

discussed in §4.3. Taken together with our finding that s

also correlates well with NGC (figure 2c), we confirm that

our SVM classifier has learned to pick out amphipathic

helices that generate the requisite topological criteria for

membrane permeation.

The membrane-permeating activity and the bactericidal

activity of a given peptide are distinct and both depend

on a variety of factors. Examples of factors that impact

membrane activity include charge, hydrophobicity, amphi-

pathicity and the ability to generate NGC. Together, these

relations point towards the idea of optimal balance between

electrostatic and hydrophobic peptide–membrane inter-

actions that overall determines AMP activity [125], which is

often also used for synthetic mimics of AMPs [126]. Thus, it

is not surprising that no simple correlations exist between

the individual parameters and activity. However, we find

that our SVM classifier captures the collective effects of the

various peptide properties as a multi-dimensional profile,

as s correlates with the ability to generate NGC, which in

turn correlates with various mechanisms of peptide-induced

membrane permeabilization [70].

That we have 16 test peptides that are ranked by machine

learning and calibrated by direct synchrotron X-ray measure-

ments of induced membrane NGC generation affords us the
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opportunity to qualitatively examine some of the trends and

principles in membrane permeation identified experimentally

in biophysical studies. We observe that membrane activity,

as described by s and NGC, is dependent upon the relation-

ships between several intrinsic physico-chemical properties,

specifically the mean hydrophobic moment mH, mean

hydrophobicity H and charge z. Here, we examine where

our present observations agree with those from previous

biophysical studies, where we deviate, and propose poten-

tial explanations. Previous work has shown that a larger

hydrophobic face tends to result in a more lytic peptide

[102,104,111], a trend that is generally consistent among our

16 peptides. We categorized the peptides into two groups

based on the size of the angle (u) subtended by the hydro-

phobic face and found that those having larger angles

(greater than 1208) typically are associated with greater mem-

brane activity, and therefore, more likely to be antimicrobial

(figure 3d ). Interestingly, peptide 12 is characterized by a nar-

rower hydrophobic face (u � 1208), yet it has considerably

high membrane activity. This finding may appear contrary

to the trend, however, it is in some ways ‘the exception that

proves the rule’. Previous work has shown that a peptide

with a low mean hydrophobicity can achieve membrane

activity when combined with a large mean hydrophobic

moment [111,125,127–129]. Conversely, a peptide with a

small mean hydrophobic moment may exhibit antimicro-

bial activity if it is has a high mean hydrophobicity

[111,125,130,131]. Indeed, a comparison between peptides

10 and 14 further illustrates precisely these relations. Further-

more, with lower peptide charge, activity has been found to

experience more influence from the mean hydrophobic

moment, mean hydrophobicity and size of the hydrophobic

face [111], as is shown accordingly by peptides 7 and

8. As we can see, our data are also in good agreement with

previous findings.

To better quantify sequence trends of AMPs, we observe

that it is well known that AMPs and membrane-permeating

peptides are abundant in the cationic residues arginine,

lysine and histidine, and the presence of hydrophobic

residues (greater than 30%) is common. Based on bioinfor-

matics analysis of the AMP database [9], we previously

established the ‘saddle-splay selection rule’, a tool for pre-

dicting whether a peptide sequence could generate NGC

[70] from its amino acid content. This rule predicts that

there will be a compositional trade-off between the number

of arginine and lysine residues, and the hydrophobicity of

an AMP. Biophysical studies and quantum mechanical simu-

lations show that arginine alone can generate NGC due to

bidentate hydrogen bonding with phosphate head groups,

while lysine and hydrophobicity must work in concert

together to generate NGC [132]. This is because hydrophob-

icity generates positive curvature while lysine generates a

negative mean curvature due to membrane wrapping from

charge compensation, which can combine to form NGC.

This observation is consistent with both experimental studies

and molecular simulations [132–134]. Our prior analyses

have shown all peptides in the AMP database to adhere to

this saddle-splay curvature selection rule [70]. Furthermore,

this relation also explains why cell-penetrating peptides

rich in arginines like HIV-TAT can generate the same kind

of membrane curvature as traditional AMPs rich in lysines

and hydrophobicity [135]. Given that our computatio-

nal model learned the physico-chemical characteristics
underlying charge (#1 in table 1) and amphiphilicity of

AMPs (nos. 2, 3, 6 and 8 in table 1), we were curious to

see whether our screening tool could identify peptides that

followed the saddle-splay selection rule. We previously

established that our classification metric s correlates with

the induction of NGC, and showed that the SVM classifier

can be used to predict NGC magnitudes for arbitrary

peptides [1]. We plotted the Pareto-optimal peptides on

the saddle-splay selection rule. Remarkably, the physico-

chemically restricted Pareto sequences (i.e. those with

physico-chemical descriptors no more than 10% outside the

range observed in the training data) were found to closely

follow the rule governing amino acid content previously

shown for AMPs [70] (figure 4a, green diamonds). This

result also demonstrates the surprising result that our

QSAR approach and SVM classifier trained solely on

physico-chemical descriptors learned a rule that describes

the geometry and topology of membrane deformation.

For the physico-chemically unrestricted Pareto-optimal

sequences (i.e. those without any restriction on the values

of the physico-chemical descriptors), the sequences tend to

segregate into two clusters, ones that follow the saddle-

splay selection rule (figure 4b, orange diamonds, no

border), and ones that fall below the curve (figure 4b,

orange diamonds, black borders). These off-trend sequences

suggest a greater plasticity in the peptide sequence and

imply that these candidates may contain additional multi-

plexed functions in addition to membrane activity. We also

compared the positions of our synthesized test peptides

along the saddle-splay selection rule with their ability

to generate NGC. We observe that the magnitude of NGC

generated by a peptide does not seem to depend on

where the sequences fall on the saddle-splay selection rule

(figure 4c). In other words, there is no significant correla-

tion ( p , 0.05) between position on this saddle-splay curve

and degree of induced NGC in membranes, consistent

with the idea that this curve represents a trade-off between

using different combinations of amino acids to enable

NGC generation (RSpearman ¼ 20.433, p ¼ 0.094 for NGC

and K/K þ R, RSpearman ¼ 20.292, p ¼ 0.273 for NGC and

mean hydrophobicity).

It is tempting here to ask what the contribution of

machine learning is, if it seems to re-learn previously ident-

ified trends or rules. When confronted by a phenomenon

governed by a complex set of rules, more traditional modes

of inquiry would typically ask which of these rules are the

most dominant, and perhaps design experiments to highlight

that in a specific context (e.g. is hydrophobic moment more

important than the size of the hydrophobic face?) Here

machine learning is more subtle. In our context of AMPs,

machine learning does not use rules or define hierarchies,

but is rather able to implicitly subsume all of these hierarchies

into a single data-driven metric and tease out these com-

plex relationships directly from the data with little human

intervention. Whether a physico-chemical parameter is

important or how two such parameters compare depends

on how it contributes to this metric, which our calibrating

experiments have shown to correlate strongly with NGC

generation. Indeed, our classifier remains equally effective

whether or not we interrogate it post hoc to ascertain how it

performs discrimination, but doing so is valuable in revealing

the connection between physico-chemical peptide properties

and activity, and illuminating the capacity of the classifier
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to recapitulate understanding gained over a large body of

prior ‘human learning’.

4.5. Discovery of unanticipated membrane-active
peptide taxonomies

To further examine the sequence space of peptides that are

dissimilar to known AMPs by sequence homology, we

turned our classifier backwards to reflexively search for

known and unknown peptide taxonomies that encode
membrane activity. We pulled several peptides and proteins

of interest with known crystal or NMR structures from the

PDB and ran them through our classifier. At first blush, one

might expect that these peptide sequences far in homology

from known AMPs should have lower or negative values of

s. Surprisingly, a diverse number of existing peptide families

were predicted by our classifier to be membrane active [1].

Within these families, we identified several candidate

peptides that have not been previously described as having

antimicrobial or membrane activity (figure 5a). We also
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found several proteins that have known membrane inter-

actions, but had not been characterized to generate NGC.

These include neuropeptides, amyloids, viral fusion proteins

and many other membrane-associated proteins.

In fact, the positions along the saddle-splay rule of the newly

discovered families show a similar distribution to that of the

Pareto sequences (figure 5b). The majority fall along the trend

(figure 5b, stars without borders) while a subset deviates,

having less lysine and more arginine content relative to their

hydrophobic content (figure 5b, stars with black borders). This

behaviour makes sense because the purported functions of

these proteins are more complicated than simply pore formation.

For example, the members of the membrane anchor proteins

family should likely persist in the lipid bilayer, which is reflected

by their higher average hydrophobicity and closer correlation

to the selection rule. In contrast, the topogenic peptides must

penetrate through bilayers and deliver cargo rather than reside

within membranes. Thus, possessing increased arginine content

makes sense, because cell-penetrating peptides tend to have less

hydrophobicity, and thereby deviate below the saddle-splay

curve for AMPs. Using the directed search of the sequence

space enabled by the SVM classifier, we can now efficiently

identify and discover curvature-generating sequences in existing

peptide families and also predict novel membrane-active

peptides evolutionarily distant from any known AMPs.
5. Outlook
In this review, we discussed an unusual way to apply machine

learning to understand membrane-active peptides. In doing so,

we simultaneously highlight the potentialities and limitations

of machine learning—we do not always ‘learn’ what we think

we are learning. The present AMP system illustrates this limit-

ation. By combining computational modelling with targeted

experimentation, we were able to identify precisely what our

SVM model learned about ‘AMP-ness’ (i.e. membrane activity

rather than antimicrobial activity). Permeation of membranes

can lead to cell death by disrupting the barrier function, so anti-

microbial activity can be directly caused by membrane activity.

However, antimicrobial activity of a peptide can also result

from other functions, such as the binding of intracellular targets.

Therefore, membrane activity and antimicrobial activity are not

coextensive with one another. What is most surprising to us is

not the sometimes unintended and exasperatingly precise literal-

ness to machine learning results (with an uncanny resemblance

to the Delphic Oracle in mythology), but rather the fact that

machine learning came to essentially the same conclusions

regarding membrane activity that researchers did in early work
on AMPs. In learning how to distinguish antimicrobial from

non-antimicrobial sequences, our classifier has foregrounded

the most recognizable feature common to known AMPs, which

is membrane activity. This is encoded within the SVM algorithm

as the distance from hyperplane s, which we show using exper-

imental data to be a quantitative measure that correlates strongly

with NGC generation. In this process, we showed the SVM

model based its predictions on ‘rules’ it had learned regarding

structure, amphiphilicity and sequence content, contextualizing

findings from prior studies of peptides that generate NGC. By

combining our classifier with Monte Carlo tools, we discovered

multiple taxonomies of peptides and proteins with predicted

membrane activity, some of which have never been previously

described to possess that function. Based on these initial studies,

there likely exist other undiscovered peptide and protein taxo-

nomies with diverse primary functions and unanticipated

membrane activity.

There are many potential applications of this screening

tool. In addition to designing new AMPs for multi-drug-

resistant infections, it also enables us to borrow inspiration

from nature’s unique ability to encode multiple functions

into the same amino acid sequence. The screening tool ident-

ified several peptides and proteins with known ability to

generate NGC, but also many others with diverse annotated

functions, including receptor signalling, homeostasis and cel-

lular transport. When combined with other protein design

techniques, we can construct multi-functional molecules to

have membrane permeating and/or antimicrobial activity.

As a genomic tool, the classifier can enable rapid screening

of new genomes for membrane-active sequences, and contrib-

ute to our knowledge of how membrane activity is used with

other functions in prokaryotes, eukaryotes and viruses.
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protein data bank of transmembrane proteins after
8 years. Nucleic Acids Res. 41, 1169. (doi:10.1093/
nar/gks1169)
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