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T data obtained from separate simulations. The source of the
exponents A and B is not clear, but implications can be drawn
from their relative magnitudes. As A . B, the separation between
the onset and the curve F ¼ 1 should diminish as the driving period
grows. This means that for long periods, stripes should give way to
square or other regular cellular patterns, whereas for shorter
periods, irregular structures should dominate.

The significance of dissipation on pattern selection has been
commented on previously9,21. For example, it has been observed that
stripes are present only in high-density, high-dissipation experi-
ments; similar results are obtained in fluids experiments29,30. My
simulations are consistent with these results: I find that the transi-
tion between stripes and square moves closer to onset and then
vanishes altogether, as the density, r, is decreased below r < 3
(measured in units of total particle area divided by available area).

In addition, we see very different densities and dissipation rates
for patterned states on opposite sides of the curve F ¼ 1. Figure 3
shows representative densities for nearby striped and square
patterns. Particles in the square pattern are much more strongly
clustered around the vertices, with maximum densities an order of
magnitude larger than in the striped pattern. The energies dis-
sipated are very different as well: the mean kinetic energy at the
conclusion of a cycle is 270% higher for the square than for the
striped pattern.

In conclusion, it may on the one hand seem surprising that an
exceedingly simplified model, containing little more than a com-
bination of periodic randomization and dissipation, and entirely
neglecting gravity, can produce an apparent wealth of spon-
taneously organized and highly structured patterns. On the other
hand, at a fundamental level there is little difference between this
construction and well-known reaction–diffusion models31,32. There,
too, randomization (in the form of diffusion) competes with
dissipation (in the form of reactions) to produce a rich tapestry
of regular and irregular patterns. Future experiments may clarify
connections between granular and other pattern formation
mechanisms. M
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Ordinary crystals are characterized by long-range translational
order in all three dimensions. In lower-dimensional systems, in
contrast, translational order is destroyed through the ‘Landau–
Peierls instability’—displacements from periodic ordering due to
thermal fluctuations whose amplitude increases with the size of
the system1–4. This effect is well known for layered systems
ordered in one dimension, such as surfactant membranes5,6,
smectic (layered) liquid crystals7 and liquid crystalline polymers8,
which form ordered stacks of fluid monolayers. Smectic liquid-
crystal polymers can be weakly crosslinked to form percolating
elastomeric networks that still allow mobility on a molecular
scale9,10. In these smectic elastomers, fluctuations of the fluid
layers are coupled to distortions of the underlying network, and
are therefore energetically penalized11, even though the network
of crosslinks has a random nature and thus no three-dimensional
translational order. Here we present a high-resolution X-ray
diffraction study of a smectic elastomer that reveals the effects
of crosslinking on long-range ordering. We find that the intro-
duction of a random network of crosslinks enhances the stability
of the layered structure against thermal fluctuations and sup-
presses the Landau–Peierls instability so as to induce ‘one-
dimensional’ long-range ordering at length-scales up to several
micrometres.

Landau1 and Peierls2 were the first to demonstrate that transla-
tional order is destroyed in one- and two-dimensional systems by
thermal fluctuations. In three-dimensional space similar arguments
can be applied to, for example, a smectic system of stacked fluid
monolayers, where rod-like mesogenic (liquid-crystal-forming)
molecules order into a ‘one-dimensional’ density wave along one
direction, but remain fluid in the other two (Fig. 1a). In such a
system the mean squared layer displacement diverges logarith-
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mically with the system size at all finite temperatures (‘Landau–
Peierls instability’). The resultant X-ray diffraction signature has
been calculated by Caillé12. In the direction perpendicular to the
layers, these divergent thermal fluctuations transform the discrete
Bragg peaks (indicative of translational order) into algebraic ‘cusps’
with the structure factor S having an asymptotic power-law form:

Sð0; 0; qzÞ <
1

| qz 2 qm|2 2 hm

where qz represents the wave vector transfer along the density
wave, qm represents the position of the mth order of diffraction
(qm ¼ mq0, q0 ¼ 2p=d, m ¼ 1; 2; 3;…, and d is the smectic layer
spacing). The exponent hm is given by hm ¼ q2

mkBT=ð8pðBKÞ
1
2Þ and

directly related to the elastic constants of this smectic system: K is
the bending modulus and B is the layer compression modulus (T is
temperature, and kB is Boltzmann’s constant). The magnitude of hm

is quite small, with typical measured values of ,0.1–0.3 near the
smectic-A/nematic phase transition temperature (TAN), where B
approaches zero. At all other temperatures, hm < 0, which results in
a saturated lineshape with ‘tails’ given by 1/q2. This can make the
discrimination between Caillé lineshapes and normal Bragg peaks
difficult, as Bragg peaks broaden into an asymptotic 1/q2 form as
well, due to contributions from dynamical effects and thermal
diffuse scattering13.

In a smectic polymer (Fig. 1b) the mesogenic molecules are
attached to polymer chains via flexible spacer groups. Although the
phase transition temperatures can differ significantly from those of
its monomeric counterpart due to the coupling between the ‘one-
dimensional’ layering and the three-dimensional ensemble of poly-
mer chains, the Landau–Peierls instability persists in such smectic
polymers: the Bragg peaks are still destroyed by fluctuations8. These
liquid-crystalline polymers can be weakly crosslinked into an
elastomer network (Fig. 1c) with almost no change in the phase
transition temperatures. The macroscopic rubber elasticity intro-
duced via such a network14 interacts with the liquid crystalline
ordering. In the case of nematic elastomer networks, where the
mesogenic units are aligned but not layered, novel forms of
mechanical instabilities and orientational memory effects have
been observed15. In a smectic elastomer, the fluctuating smectic
layers cannot move past crosslinks in the network: this network
coupling imposes a penalty for relative translations between the
orientationally ordered fluid layers and the polymer network. A
recent continuum theory has predicted that the fluctuations asso-
ciated with the Landau–Peierls instability can be suppressed in a
smectic elastomer, so that the usual logarithmic divergence of the
mean squared layer displacements no longer exists11. The marginally
stable, quasi-periodic structure of normal ‘one-dimensional’ fluid
stacks should be transformed into a fully periodic structure with
proper long-range order, and the resultant diffraction should
change from Caillé lineshapes to normal Bragg peaks.

A smectic elastomer system has a significant degree of random

disorder, which is not included in the original theoretical model
(ref. 11). When such a random field is taken into account the
quenched static disorder will eventually destroy translational long-
range order at large length-scales (small q values), so that the
discrimination between Bragg peaks and Caillé lineshapes must
be made at large enough q values. We note that the Caillé lineshape
cannot have an asymptotic q-dependence that is steeper than 1/q2,
whereas the behaviour of a true Bragg peak is not bound by this
constraint. Even a Bragg peak that has been broadened by lattice
imperfections16 can in principle still be sharper than 1/q2, and may
not reach this asymptotic limit for several decades of intensity.

The basic macromolecular system used in this study is a smectic
random copolymer with a comb-like architecture17. Most of the side
chains connect rigid ‘rod-like’ molecules to the polyacrylate back-
bone, which provide the system with liquid crystalline phase
behaviour (Fig. 2). A small fraction (,5%) of the side-chains,
however, terminate with functional hydroxyl groups, and serve as
active sites for the crosslinking process. These ‘linear’ liquid-crystal-
line copolymer chains can be transformed into a weakly linked,
‘infinite-molecular-weight’ network via reaction with a crosslinking
agent in a solvent (Fig. 1c and Fig. 2). The measurements reported
below were performed at beamline X-10A of the National Synchro-
tron Light Source, Brookhaven National Laboratory, USA. To get
monodomain samples, the uncrosslinked polymer is aligned with a
magnetic field in a temperature-controlled cell. In contrast, the
liquid-crystalline groups in the crosslinked elastomer are aligned
with a strain field, which is applied in situ to freely suspended
samples in a different temperature-controlled cell with an internal
translation stage. Owing to the multiple-Bragg reflections in the
monochromator and the analyser crystals, the measured intensity of
the incident beam has an approximately 1/q3.6 dependence, which is
much sharper than 1/q2 and therefore sufficiently steep for the
present lineshape measurement. The in-plane liquid-like disorder
has been independently confirmed by wide-angle X-ray scattering.

Measurements for both the uncrosslinked smectic polymer and
the crosslinked smectic elastomer were done at T ¼ 55:0 8, which is
in the smectic-A phase well below TAN and well above the glass
transition temperature Tg. The full mosaic width, which measures
the variation of layering directions about the average, is 2.58 for the
elastomer and 4.18 for the polymer. Figure 3a shows the scattering
intensity from the first-order diffraction of the aligned elastomer.
The scattering intensity for the smectic elastomer decreases rapidly
away from q1, with a slope of 2 2:40 6 0:10 on a log–log plot over
three orders of magnitude. The Bragg scattering from the elastomer
is significantly sharper than a Caillé power-law lineshape, which
saturates at a limiting slope of −2 at these temperatures. Figure 3b
compares the asymptotic slopes of the diffuse scattering from the
crosslinked elastomer and the corresponding uncrosslinked poly-
mer. The dramatic sharpening of the elastomer lineshape is corre-
lated with the existence of percolating crosslinks and the resultant
change in polymer topology. In contrast to the lineshape of the

Figure 1 Schematic representation of a

smectic liquid crystal (a), a smectic-crystal-

line polymer (b), and a weakly crosslinked

smectic elastomer network (c). Crosslinks

are represented by cylinders. The low

density of crosslinks provides the smectic

elastomer system with solid-like behaviour

at macroscopic length-scales while retain-

ing liquid-like behaviour at microscopic

length-scales.
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elastomer, the intensity tails of the uncrosslinked polymer have a
slope of 2 1:85 6 0:10. The absolute value of the measured slope is
expected to be somewhat less than the theoretical limit of 2 owing
to the finite mosaic width of the sample. In fact, the mosaic
distribution causes the Caillé lineshape to vary continuously
between a power law with an exponent of 2 2 hm (for a single-
orientation sample with no mosaic spread) to one with an exponent
of 1 2 hm (for a random powder)18. Moreover, we have performed
measurements on a sample of the same compound with a narrower
mosaic width, which is possible at temperatures closer to TAN, and
obtained the established saturation value of −2 for the asymptotic
slope.

We emphasize that the smectic elastomer network remains liquid
at microscopic length-scales, even though it is a soft solid at
macroscopic length-scales. Macroscopic deformations of the
sample were found to drastically change the orientational distribu-
tion and layering texture at the molecular level. This is also evident
in preliminary measurements of the weak higher-order diffraction
(data not shown), which is sensitive to the ‘sharpness’ of layer
interfaces at length-scales smaller than a smectic layer spacing,
and is therefore susceptible to such liquid-like disorder. More
importantly, the sample can melt into its nematic and isotropic
phases on heating and reorder into the present rubber-like smectic
phase. In other words, the smectic elastomer forms a soft, thermo-
dynamically stable ‘one-dimensional’ lattice, and not a quenched
‘glassy’ solid with frozen-in order. In addition, the characteristic
timescale that separates solid-like behaviour and liquid-like beha-
viour decreases as TAN is approached from lower temperatures.
Consequently the dynamical coupling responsible for the suppres-
sion of the Landau–Peierls instability is expected to disappear near
TAN (ref. 19).

Owing to its random nature, the elastomer lattice is expected to

Figure 2 The polymer and crosslinking agent used in these experiments. a, The

uncrosslinked polyacrylate-based, side-chain liquid-crystallinepolymer (number-

average relative molecular mass, 11,200), synthesized by radical copolymeriza-

tion. The proportion of side-chains which terminate with functional hydroxyl

groups is 5mol.%. b, Crosslinking is achieved by reaction with 4,49-diphenyl-

methane di-isocyanate under basic conditions (triethylamine) in toluene. The

similarity in the phase sequences of the elastomer (g 31 SA 80 N 111 I) and the

uncrosslinked polymer (g 26 SA 82 N 110 I) has been verified with differential

scanning calorimetry and polarizing microscopy (temperatures given in 8C; g, SA

and N indicate the glassy, smectic-A and nematic phases, respectively). The

crosslink density of the smectic elastomer network is ,2–5mol.%, as estimated

from a swelling experiment in toluene.

Figure 3 Results of X-ray diffraction studies. a, A log–log plot of the background-

subtracted first-order diffraction intensity from the smectic elastomer network.

The diffraction intensity decreases sharply away from q1 and is significantly

sharper than the normal Caillé lineshape for stacked fluid layers (limiting

slope, −2). b, Comparison of the asymptotic diffraction intensity tails from the

elastomer (circles; q1 ¼ 0:255 Å−1, slope of 2:40 6 0:10) and the corresponding

uncrosslinked polymer (triangles; q1 ¼ 0:253 Å−1, slope of 1:85 6 0:10). The

sharpening of the elastomer lineshape is clearly associated with the existence

of crosslinks. The asymptotic slope is reached at slightly different q ranges for the

two samples owing to domain size effects. The uncrosslinked polymer was

sealed in a quartz capillary (1.5mm diameter), and placed between the poles of a

0.8 T SmCo5 magnet, inside the inner stage of a two-stage sample cell with a

temperature stability of 630mK. Alignment of the smectic planes in the uncross-

linked polymer was achieved by cooling the sample from the nematic phase at

T ¼ 100 8C in the magnetic field, at a rate of 0.2 8C h−1. The elastomer sample

(,7 3 2 3 1mm) was stretched in situ by 25% in the nematic phase at 90 8C, then

subsequently cooled into an aligned smectic phase. The sample cells were

coupled to a 4–circle diffractometer, with qz orientated perpendicular to the

smectic layers. The monochromator and the analyser consisted of a double-

bounce Si(111) and a triple-bounce Ge(111) channel-cut crystal set non-disper-

sively at a wavelength of l ¼ 1:5347 Å, which resulted in a sharp in-phase

resolution of Dqz ¼ 1:6 3 102 4 Å−1, given by the half-width at half-maximum of

the incident beam.
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have a high density of defects. It is interesting to compare these
defects with flux vortex lattices in superconductivity20. At large
enough length-scales (above the so-called Larkin length), even
arbitrarily weak static defects can destroy translational long-range
order for all dimensions , 4. For flux vortex lattices, the defects are
rigidly fixed in space, and not connected to the fluctuating lattice.
Long-range order is therefore always destroyed at large enough
length-scales. The analogy with smectic elastomers is complex,
because the defects are crosslinks which are embedded in the
fluctuating lattice itself, and therefore are not strictly static. We
observed 1/q2.4 intensity tails which persist down to q values
approaching our experimental resolution limit, which is high
enough to resolve length-scales of several micrometres. For the
limiting case of static crosslinks, the scattering signature may
consist of a crossover between the disordered Larkin limit at a
small q, to the predicted Bragg behaviour at large q, which is
the range we observe. As the Larkin length has been known to
be macroscopically large even for soft lattices (tens of micrometres)
we may not be able to observe this effect even at the high resolution
of our experiments. But because crosslinks can locally disturb the
smectic layering, and can even destroy the ‘one-dimensional’
lattice down to molecular length-scales at high crosslink densities21,
the lineshape at our measured range of q values can also be affected.
As with effects related to the mosaic width, such defects can
only broaden rather than sharpen the lineshape associated with
the ‘one-dimensional’ ordering, and therefore cannot explain our
unambiguous observation of an elastomer Bragg peak that is
sharper than the Caillé lineshape. In these smectic elastomers the
introduction of disorder in the form of a random network has
the counterintuitive result of enhancing the ‘one-dimensional’
ordering. M
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Since 1932 it has been known that a number of ordered alloys
show an unusual kind of deformation behaviour1–3. These alloys
(including Au–Cd, Au–Cu–Zn, Cu–Zn–Al, Cu–Al–Ni)4–8, after
being aged for some time in a martensitic state (the low-symmetry
phase of a diffusionless transformation), can be deformed like a
soft and pseudo-elastic rubber (with a recoverable strain as large
as a few per cent). Accompanying martensite ageing is the
development of martensite stabilization9 (increase in the tem-
perature of reverse transformation to the parent state), the
avoidance of which is important in actuator applications of the
shape-memory effect29, (which these alloys also generally exhibit.
The origin of this rubber-like behaviour and of the ageing effect
has remained unclear10–17. Here we show that this behaviour does
not involve a change in the degree of long-range order, but is
instead due to an atomic rearrangement within the same sub-
lattice of the imperfectly ordered alloy during martensite ageing.
This process is driven by a general tendency for the equilibrium
symmetry of the short-range order configuration of lattice imper-
fections to conform to the symmetry of the lattice. This principle
not only explains all the observed aspects of the rubber-like
behaviour and the ageing effect in both ordered and disordered
alloys, but may also further our understanding of some diffusion
phenomena in other crystalline materials.

A martensitic transformation lowers the symmetry of a crystal
without involving atomic exchange or diffusion. As a result of
symmetry lowering, a single crystal of the parent phase (high-
temperature phase) is split into many twin-related martensite
domains. If the martensite of the above-mentioned alloys is
deformed immediately after being transformed from the parent
phase, the strain can be accommodated by the easy reversal of some
of the domains into new ones, that is, twinning. This explains the
‘softness’ of the martensite. Because the stress-induced domains
have the same martensite structure and hence the same stability as

Figure 1 Electrical resistivity of single crystal Au50.5Cd49.5 alloy as a function of

ageing time, for the parent phase (enlarged in the left inset) after transformation

from well-aged martensite, and for martensite (enlarged in the right inset) after

transformation from well-aged parent.


