Chemistry & Biology Brief Communication

Inorganic Mercury Detection and Controlled Release of Chelating Agents from Ion-Responsive Liposomes

Mehmet Veysel Yigit,^{1,2,5} Abhijit Mishra,^{3,5} Rong Tong,³ Jianjun Cheng,^{3,4} Gerard C.L. Wong,^{2,3,*} and Yi Lu^{1,2,3,4,*}

¹Center for Biophysics and Computational Biology

²Beckman Institute for Advanced Science and Technology

³Department of Materials Science and Engineering

⁴Department of Chemistry

University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA

⁵These authors contributed equally to this work

*Correspondence: yi-lu@illinois.edu (Y.L.), gclwong@illinois.edu (G.C.L.W.)

DOI 10.1016/j.chembiol.2009.08.011

SUMMARY

A liposome system that can detect and detoxify mercury in aqueous solution is demonstrated. The system consists of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and 20% PEG-PE (PEG MW 2000 Da) that forms liposome, which encapsulates selfquenching fluorescein for detection, and chelating agent meso-2,3-dimercaptosuccinic acid (meso-DMSA) for chelating detoxification through Hg²⁺responsive release of fluorescein and meso-DMSA. This system can detect mercury levels as low as 10 nM with high selectivity. In particular, the release profile of meso-DMSA by the local concentration of Hg can be modulated, so that more chelators are released in regions of high concentration and less chelators are released in regions of low concentration. The design has been demonstrated both in vitro and in HeLa cells. This "budgeted" release profile is particularly useful in situations in which the local levels of Hg contamination vary, or if such contamination is time dependent.

INTRODUCTION

Mercury exposure has been linked to a number of health problems, such as damage to the central nervous system, endocrine system, brain, kidney, and fetus development (Harris et al., 2003). Because inorganic mercury is found in water, soil, food sources, and a broad range of environments, there is a substantial need for both sensitive detection and efficient detoxification of mercury—just like we do for sensing other biologically important metal ions (Nolan and Lippard, 2003; Kikuchi et al., 2004; Komatsu et al., 2005; Wang and Guo, 2006; Qian et al., 2009). To meet the need, a number of mercury sensors have been developed based on small organic molecules (Yoon et al., 1997; Guo et al., 2004; Caballero et al., 2005; Yoon et al., 2005; Yang et al., 2005; Nolan et al., 2006; Kim et al., 2006; Ha-Thi et al., 2007; Nolan and Lippard, 2007; Yoon et al., 2007), oligonucleotides (Ono and Togashi, 2004; Wang et al., 2008), conjugated polymers (Liu et al., 2007), foldamers, (Zhao and Zhong, 2006), micelles, (Pallavicini et al., 2007) genetically engineered cells (Virta et al., 1995), membranes (Chan et al., 2001), electrodes (Widmann and van den Berg, 2005), enzymes (Frasco et al., 2007), antibodies (Matsushita et al., 2005), proteins (Chen and He, 2004; Wegner et al., 2007), DNAzymes (Hollenstein et al., 2008; Liu and Lu, 2007), functionalized nanotubes (Heller et al., 2006), and nanoparticles (Lee et al., 2007; Xue et al., 2008). Despite the progress of mercury detection in organic solvents, there remains a need for sensors with high sensitivity and selectivity that can detect mercury in water (Guo et al., 2004; Caballero et al., 2005; Ha-Thi et al., 2007; Prodi et al., 2000; Szurdoki et al., 2000; Liu and Tian, 2005; Song et al., 2006; Zhao et al., 2006), and no single platform can detect and detoxify mercury at the same time. Moreover, the distribution of mercury can be location and time specific; a systemic dose of detoxifying agents can be inefficient in dealing with various concentrations of mercury, whereas a large dose can potentially lead to undesirable side effects. In this paper, we report a novel liposome-based system that can detect and respond to the presence of mercury with a concentration as low as 10 nM, the maximum contamination level defined by the US Environmental Protection Agency (EPA) for mercury in drinking water. In particular, we are able to modulate the release profile of Hg chelators by the local concentration of Hg so that more chelators are released in regions with high-concentration Hg and low or no chelators are released in regions of low concentration. This budgeted release profile will be particularly useful in situations in which the local levels of Hg contamination vary, or if such contamination is time dependent.

RESULTS AND DISCUSSION

Liposomes are assemblies of lipid molecules in the form of closed spherical bilayers. They have been used extensively for drug delivery applications. Because the lipid bilayer separates the encapsulated content from the external environment, efficient encapsulation of a broad range of cargo is possible (Samad et al., 2007; Dass, 2008). It has been shown that inorganic mercury binds to phosphatidylethanolamine (PE) lipid

Chemistry & Biology A Liposome-Based Mercury Detection System

Figure 1. Schematic Illustration of Hg²⁺-Responsive PEG-Liposomes for Selective Detection and Controlled Release of Chelating Agents

(A) Interaction of Hg²⁺ with fluorescein-encapsulated DOPE liposomes resulted in release of fluorescein and selective Hg²⁺ sensing.

(B) Interaction of Hg²⁺ with *meso*-DMSA and fluorescein-encapsulated DOPE liposomes resulted in release of both *meso*-DMSA and fluorescein and thus Hg²⁺ detection and detoxification.

Green and orange circles represent fluorescein and *meso*-DMSA, respectively. Enlarged areas show lipid molecules on the liposome surface and their interaction with Hg²⁺ that destabilizes liposomes.

the solution. To further quantify this effect, different amounts of Hg²⁺ were added into the liposome solution and the change in fluorescence spectra was monitored over a 15 min period. The fluorescence increase with 10, 25, 50, 100 nM and 1 μ M Hg²⁺ was determined as 20.66 ± 6.88%, 24.66 ± 7.54%, 59.8 ± 19.74%, 74.28 ± 5.85%, and 97.83 ±

headgroups strongly and can reorient them (Figure 1A inset) (Girault et al., 1996). We hypothesized that we might be able to exploit this effect to make a mercury sensing and controlled release platform using the PE-based PEG-liposomes. To test this hypothesis, we developed PEG-liposomes encapsulating both fluorescent molecules and mercury-specific chelators. These liposomes are designed to rupture in the presence of mercury, thus releasing the encapsulated fluorophores and the chelators. Because the self-quenching of the fluorophores inside of the liposome is reversed upon liposome rupture, the fluorescent signal increases, thereby providing a readout of the release profile (Figure 1A). Importantly, as the chelators are released to reduce the concentration of free mercury (Figure 1B), the release of chelators is downregulated, so that the PEG-liposomes can be maximally available to interact with free mercury elsewhere.

To demonstrate the rupture of liposomes in the presence of Hg²⁺, liposomes were prepared using 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and PEG-PE (PEG MW 2000 Da) as the building blocks. We found that by incorporating 20% w/w of PEG we were able to achieve stable liposomes. However, when the liposomes consist of 100% DOPE, they were not stable due to the intrinsic negative curvature. Fluorescein was encapsulated in the liposomes with a concentration of 50 mM, which is sufficiently high to ensure fluorescence self-quenching and detection. The interaction of mercury ions with DOPE headgroups, and the resultant induced reorientation of the headgroups, can in principle lead to rupture of the vesicles, thereby releasing and unquenching the fluorescein. When 1 μ M Hg(ClO₄)₂ was added to the liposomes, a significant increase in the fluorescence was indeed observed (Figure 2A). The fluorescein release at this concentration of mercury is determined to be the maximum by comparing it with the fluorescein release by Triton-X (a detergent), which should rupture all lipid vesicles in 3.05%, respectively. As shown in Figure 2B, fluorescence increased with increasing concentration of Hg^{2+} , which is consistent with the hypothesis that mercury is the inducing agent for liposome rupture and fluorescein release. At 10 nM Hg^{2+} , the maximum contamination level defined by the US EPA, the system can still display signal above the background (Figure 3).

To test whether Hg2+-lipid interaction can be used to make ion-responsive liposomes for the budgeted release of chelating agents. meso-2.3-dimercaptosuccinic acid (meso-DMSA), a molecule routinely used in clinic for the treatment of mercury exposure, was encapsulated in the liposomes in order to chelate mercury. Meso-DMSA is one of the most commonly used chelators because it is water-soluble, odorless, stable, and has low toxicity (Blanusa et al., 2005). It binds to the inorganic mercury and forms nontoxic metal-chelator complex (Maiorino et al., 1993; Fang and Fernando, 1994; Fang et al., 1996; Garza-Ocanas et al., 1997). To test the efficiency of meso-DMSA chelation, we incubated Hg²⁺ with meso-DMSA for 5 min and then added it to the fluorescein-encapsulated liposomes for a final concentration of 1 μ M Hg²⁺. In contrast to high fluorescence intensity (97.83 \pm 3.05%) at the same concentration of Hg²⁺ in the absence of meso-DMSA, the fluorescence intensity remained unchanged in the presence of meso-DMSA (Figure 2B, 1µM + meso-DMSA). This experiment indicates that the mercury ions that bind to meso-DMSA can no longer interact with new lipid headgroups and therefore do not break up liposomes that encapsulate additional chelators.

In order to quantify the detection and budgeted chelation of Hg²⁺ simultaneously, we encapsulated 50 mM fluorescein with 0, 100, 1000, or 2000 μ M *meso*-DMSA in the liposomes. The liposomes were then incubated with 1 μ M Hg²⁺ for 15 min. As shown in the inset of Figure 3, the concentration of *meso*-DMSA is

Figure 2. Fluorescence Enhancement in Fluorescein-Encapsulated Liposomes in the Presence of Hg²⁺ (A) Fluorescence spectra of fluorescein-encapsulated liposomes before (black) and after (gray) addition of 1 μ M Hg²⁺, λ_{ex} = 495 nm. (B) Time-dependent fluorescence change after addition of 10, 25, 50, 100, 1000 nM Hg²⁺ or 1 μ M Hg²⁺ chelated with *meso*-DMSA (1 μ M + *meso*-DMSA, as a negative control), or Triton-X (as a positive control).

inversely correlated with the fluorescence intensity inside of the liposomes. This result indicates that when the liposomes interact with the mercury ions, some liposomes rupture and release the encapsulated dve and meso-DMSA. The released dve results in the increase in fluorescence intensity while the released meso-DMSA binds to the mercury ions; the resulting complex is unable to rupture the liposomes. As the concentration of meso-DMSA increases, fewer liposomes are ruptured, resulting in smaller increase in fluorescence. This result further demonstrates that the liposomes comprise a single delivery platform that can be used for both Hg2+ detection and efficient Hg2+ chelation via the budgeted release of meso-DMSA from ion-responsive liposomes. Clearly, the rate of liposome rupture depends on the Hg²⁺ concentration. This important property allows for tuning the response of these liposomes by encapsulating different doses of the chelators. Because only a fraction of the liposomes are ruptured in this controlled chelation scheme, only as much chelators are released as necessary, leaving the rest intact for further detection and chelation of mercury contamination.

It is known that different ions can also interact with lipids, and potentially lead to adventitious interactions with liposomes. To test selectivity of the present system for mercury, we added 10 μ M of different divalent metal ions and 1 mM Mg²⁺ and Ca²⁺ to the system. The increase in the fluorescence upon addition of 10 μ M of essentially all other divalent metal ions and 1 mM Ca²⁺ or Mg²⁺ is drastically lower compared with the increase on addition of only 10 nM Hg²⁺ (see Figure 3). This result suggests that the system in not only sensitive but also selective to Hg²⁺.

To find out if such selectivity is maintained not only when individual metal ion is tested, as shown in Figure 3, but also when mixtures of metal ions are used, we compared the increase in fluorescence intensity between the liposomes encapsulating fluorescein alone and the liposomes encapsulating both fluorescein and *meso*-DMSA in the presence of 1 μ M Hg²⁺ and 10 μ M Mn²⁺, Cd²⁺, Ba²⁺, Co²⁺, or Cu²⁺. As shown in Figure 4, the liposomes

Figure 3. Percentage of Fluorescein Release in the Presence of Different Divalent Metal lons

Inset: Percentage of fluorescein release in the presence of different concentrations of *meso*-DMSA-encapsulated DOPE liposomes treated with 1 µM Hg²⁺. The [Hg] denotes mercury chelated with *meso*-DMSA. The error bars were determined from standard deviation of the data in triplicate.

Figure 4. Percentage of Fluorescein Release in the Presence of a Mixture of $\rm Hg^{2+}$ and Other Divalent Metal Ions

Percentage of fluorescein release in 50 mM fluorescein-encapsulated (light gray) or 50 mM fluorescein and 3 mM meso-DMSA-encapsulated liposomes in the presence of 10 μ M Mn²⁺ + 1 μ M Hg²⁺, 10 μ M Cd²⁺ + 1 μ M Hg²⁺, 10 μ M Ba²⁺ + 1 μ M Hg²⁺, 10 μ M Co²⁺ + 1 μ M Hg²⁺. The error bars were determined from standard deviation of the data in triplicate.

containing fluorescein and *meso*-DMSA have significantly less fluorescent increase than the liposomes containing only fluorescein, suggesting that Hg²⁺ effect are maintained in the presence of excess of other metal ions.

After demonstrating the controlled and budgeted release of a Hg²⁺ chelator in vitro, we assessed whether this approach can be used in a biological system. First, we utilized the HeLa cells in this study and checked the viability of the HeLa cells in the presence of Hg²⁺ at a concentration of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 μ M. As shown in the Figure 5A, the cell viability decreased dramatically to 35.7% in the presence of 0.2 μ M Hg²⁺ and further decreased to 24.0% in the presence of 0.4 μ M Hg²⁺, which confirmed the toxicity of Hg²⁺ to the cells. Incubating the HeLa cells with liposomes without any chelator resulted in almost identical toxicity profiles as the cells in the absence of liposomes, indicating that the liposomes cannot interact with Hg²⁺ to reduce its toxicity. In contrast, when 2 μ M

meso-DMSA-containing liposomes were incubated with the HeLa cells, substantially improved viabilities were observed. The cell viabilities improved 56.8% and 43.1% when 2 μ M meso-DMSA was added to the cell culture media containing 0.2 and 0.4 μ M Hg²⁺, respectively, than those without meso-DMSA (Figure 5A). The cell viability did not improve beyond 0.6 μM Hg $^{2+},$ probably due to the limitation of amount of 2 μM meso-DMSA that can be encapsulated into liposomes and their incomplete release. To provide further evidence for dosagedependence protection, we carried out the same experiment in the presence of a constant concentration of 0.4 μ M Hg²⁺ and used HeLa cells that were pretreated with increasing concentrations of either liposomes alone (LP + 0.4 µM Hg) or liposomes with meso-DMSA (LP-meso-DMSA + 0.4 µM Hg). As shown in Figure 5B, different concentrations of liposome-treated cells without chelator inside have little effect on cell viability, whereas increasing concentrations of liposome encapsulated meso-DMSA resulted in higher cell viability (from 24.0% to 49.4%), indicating the effects of controlled and budgeted release of a Hq²⁺ chelator in cellular environment.

SIGNIFICANCE

Mercury is a highly toxic and widespread pollutant in the environment. Therefore, the strategy or the system that allows for both sensitive detection and efficient detoxification of mercury is in great demand. For this reason a number of mercury sensor-related papers have been published recently. However, no single platform can detect and detoxify mercury at the same time. More importantly, because the distribution of mercury can be location and time specific, a single dose of mercury detoxification agent might be inefficient in dealing with various concentrations of Hg, and too high a concentration of the agent can potentially lead to side effects. We have demonstrated a multiple-use, liposomebased system that can simultaneously detect and detoxify inorganic mercury, both in vitro and in HeLa cells, by controlled and budgeted release of both a fluorophore for sensing and a chelating agent for detoxification. This system

Figure 5. HeLa Cell Viability Assays with Meso-DMSA-Encapsulated Liposomes and Hg²⁺

(A) Hg²⁺ concentration-dependent viability of HeLa cells alone (HeLa), HeLa cells initially treated with liposomes (HeLa + LP), or HeLa cells initially treated with liposomes containing 2 μM meso-DMSA (HeLa + LP-meso-DMSA).

(B) Liposome dosage-dependent HeLa cell viability in the presence of liposome alone treated $0.4 \,\mu\text{M Hg}^{2+}$ (LP + $0.4 \,\mu\text{M Hg}^{2+}$) or $2 \,\mu\text{M}$ meso-DMSA-encapsulated liposomes treated with $0.4 \,\mu\text{M Hg}^{2+}$ (LP-meso-DMSA + $0.4 \,\mu\text{M Hg}^{2+}$). Cell viability was measured at day 2 of liposome/cell incubation by MTT cytotoxicity assays. The error bars were determined from standard deviation of the data in triplicate.

is highly selective for mercury, and is able to detect mercury as low as 10 nM, the maximum contamination level defined by the US Environmental Protection Agency. This budgeted release profile will be particularly useful in situations where the local levels of Hg contamination vary in a location- and time-dependent manner.

EXPERIMENTAL PROCEDURES

Experimental details of liposome preparation, fluorescence measurements, and cell experiments are described in Supplemental Experimental Procedures (available online).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and can be found with the article online at http://www.cell.com/chemistry-biology/ supplemental/S1074-5521(09)00281-6.

ACKNOWLEDGMENTS

This work was supported by the US National Science Foundation (CTS-0120978 and DMR-0117792) and the Department of Energy (DE-FG02-08ER64568).

Received: March 20, 2009 Revised: August 16, 2009 Accepted: August 31, 2009 Published: September 24, 2009

REFERENCES

Blanusa, M., Varnai, V.M., Piasek, M., and Kostial, K. (2005). Chelators as antidotes of metal toxicity: therapeutic and experimental aspects. Curr. Med. Chem. *12*, 2771–2794.

Caballero, A., Martinez, R., Lloveras, V., Ratera, I., Vidal-Gancedo, J., Wurst, K., Tarraga, A., Molina, P., and Veciana, J. (2005). Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J. Am. Chem. Soc. *127*, 15666–15667.

Chan, W.H., Yang, R.H., and Wang, K.M. (2001). Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin. Anal. Chim. Acta *444*, 261–269.

Chen, P., and He, C. (2004). A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J. Am. Chem. Soc. *126*, 728–729.

Dass, C.R. (2008). Drug delivery in cancer using liposomes. Methods Mol. Biol. 437, 177–182.

Fang, X., and Fernando, Q. (1994). Synthesis, structure, and properties of rac-2,3-dimercaptosuccinic acid, a potentially useful chelating agent for toxic metals. Chem. Res. Toxicol. *7*, 148–156.

Fang, X., Hua, F., and Fernando, Q. (1996). Comparison of rac- and meso-2,3-dimercaptosuccinic acids for chelation of mercury and cadmium using chemical speciation models. Chem. Res. Toxicol. 9, 284–290.

Frasco, M.F., Colletier, J.-P., Weik, M., Carvalho, F., Guilhermino, L., Stojan, J., and Fournier, D. (2007). Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS J. *274*, 1849–1861.

Garza-Ocanas, L., Torres-Alanis, O., and Pineyro-Lopez, A. (1997). Urinary mercury in twelve cases of cutaneous mercurous chloride (calomel) exposure: effect of sodium 2,3-dimercaptopropane-1-sulfonate (DMPS) therapy. J. Toxicol. Clin. Toxicol. *35*, 653–655.

Girault, L., Lemaire, P., Boudou, A., Debouzy, J.-C., and Dufourc, E.J. (1996). Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study. Eur. Biophys. J. 24, 413–421. Guo, X., Qian, X., and Jia, L. (2004). A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc. 126, 2272–2273.

Harris, H.H., Pickering, I.J., and George, G.N. (2003). The chemical form of mercury in fish. Science 301, 1203.

Ha-Thi, M.-H., Penhoat, M., Michelet, V., and Leray, I. (2007). Highly selective and sensitive phosphane sulfide derivative for the detection of Hg2+ in an organoaqueous medium. Org. Lett. 9, 1133–1136.

Heller, D.A., Jeng, E.S., Yeung, T.-K., Martinez, B.M., Moll, A.E., Gastala, J.B., and Strano, M.S. (2006). Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science *311*, 508–511.

Hollenstein, M., Hipolito, C., Lam, C., Dietrich, D., and Perrin, D.M. (2008). A Highly Selective DNAzyme Sensor for Mercuric Ions. Angew. Chem. Int. Ed. Engl. *47*, 4346–4350.

Kikuchi, K., Komatsu, K., and Nagano, T. (2004). Zinc sensing for cellular application. Curr. Opin. Chem. Biol. *8*, 182–191.

Kim, S.H., Kim, J.S., Park, S.M., and Chang, S.-K. (2006). Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam. Org. Lett. 8, 371–374.

Komatsu, K., Kikuchi, K., Kojima, H., Urano, Y., and Nagano, T. (2005). Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and degional distribution of synaptically released Zn2+ in hippocampal slices. J. Am. Chem. Soc. *127*, 10197–10204.

Lee, J.-S., Han, M.S., and Mirkin, C.A. (2007). Colorimetric detection of mercuric ion (Hg2+) in aqueous media by DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. Engl. *46*, 4093–4096.

Liu, B., and Tian, H. (2005). A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun. (Camb.), 3156–3158.

Liu, J., and Lu, Y. (2007). Rational design of "Turn-On" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem. Int. Ed. Engl. *46*, 7587–7590.

Liu, X., Tang, Y., Wang, L., Zhang, J., Song, S., Fan, C., and Wang, S. (2007). Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Adv. Mater. *19*, 1471–1474.

Maiorino, R.M., Aposhian, M.M., Xu, Z.F., Li, Y., Polt, R.L., and Aposhian, H.V. (1993). Determination and metabolism of dithiol chelating agents. XV. The meso-2,3-dimercaptosuccinic acid-cysteine (1:2) mixed disulfide, a major urinary metabolite of DMSA in the human, increases the urinary excretion of lead in the rat. J. Pharmacol. Exp. Ther. 267, 1221–1226.

Matsushita, M., Meijler, M.M., Wirsching, P., Lerner, R.A., and Janda, K.D. (2005). A blue fluorescent antibody-cofactor sensor for mercury. Org. Lett. 7, 4943–4946.

Nolan, E.M., and Lippard, S.J. (2003). A "Turn-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. *125*, 14270–14271.

Nolan, E.M., and Lippard, S.J. (2007). Turn-On and ratiometric mercury sensing in water with a red-emitting probe. J. Am. Chem. Soc. *129*, 5910–5918.

Nolan, E.M., Racine, M.E., and Lippard, S.J. (2006). Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorg. Chem. 45, 2742–2749.

Ono, A., and Togashi, H. (2004). Molecular sensors: Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. Engl. *43*, 4300–4302.

Pallavicini, P., Diaz-Fernandez, Y.A., Foti, F., Mangano, C., and Patroni, S. (2007). Fluorescent sensors for Hg(2+) in micelles: a new approach that transforms an ON-OFF into an OFF-ON response as a function of the lipophilicity of the receptor. Chem. Eur. J. *13*, 178–187.

Prodi, L., Bargossi, C., Montalti, M., Zaccheroni, N., Su, N., Bradshaw, J.S., Izatt, R.M., and Savage, P.B. (2000). An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc. *122*, 6769–6770.

Qian, F., Zhang, C., Zhang, Y., He, W., Gao, X., Hu, P., and Guo, Z. (2009). Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J. Am. Chem. Soc. 131, 1460-1468.

Samad, A., Sultana, Y., and Aqil, M. (2007). Liposomal drug delivery systems: an update review. Curr. Drug Deliv. *4*, 297–305.

Song, K.C., Kim, J.S., Park, S.M., Chung, K.-C., Ahn, S., and Chang, S.-K. (2006). Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Org. Lett. *8*, 3413–3416.

Szurdoki, F., Ren, D., and Walt, D.R. (2000). A combinatorial approach to discover new chelators for optical metal ion sensing. Anal. Chem. 72, 5250–5257.

Virta, M., Lampinen, J., and Karp, M. (1995). A luminescence-based mercury biosensor. Anal. Chem. 67, 667–669.

Wang, T., and Guo, Z. (2006). Copper in medicine: homeostasis, chelation therapy and antitumor drug design. Curr. Med. Chem. *13*, 525–537.

Wang, Z., Heon Lee, J., and Lu, Y. (2008). Highly sensitive "turn-on" fluorescent sensor for Hg^{2+} in aqueous solution based on structure-switching DNA. Chem. Commun., 6005–6007.

Wegner, S.V., Okesli, A., Chen, P., and He, C. (2007). Design of an emission ratiometric biosensor from MerR family proteins: A sensitive and selective sensor for Hg2+. J. Am. Chem. Soc. *129*, 3474–3475.

Widmann, A., and van den Berg, C.M.G. (2005). Mercury detection in seawater using a mercaptoacetic acid modified gold microwire electrode. Electroanalysis *17*, 825–831.

Xue, X., Wang, F., and Liu, X. (2008). One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. *130*, 3244–3245.

Yang, Y.-K., Yook, K.-J., and Tae, J. (2005). A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J. Am. Chem. Soc. *127*, 16760–16761.

Yoon, J., Ohler, N.E., Vance, D.H., Aumiller, W.D., and Czarnik, A.W. (1997). A fluorescent chemosensor signaling only Hg(II) and Cu(II) in water. Tetrahedron Lett. *38*, 3845–3848.

Yoon, S., Albers, A.E., Wong, A.P., and Chang, C.J. (2005). Screening mercury levels in fish with a selective fluorescent chemosensor. J. Am. Chem. Soc. *127*, 16030–16031.

Yoon, S., Miller, E.W., He, Q., Do, P.H., and Chang, C.J. (2007). A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew. Chem. Int. Ed. Engl. *46*, 6658–6661.

Zhao, Y., and Zhong, Z. (2006). Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy. J. Am. Chem. Soc. *128*, 9988–9989.

Zhao, Y., Lin, Z., He, C., Wu, H., and Duan, C. (2006). A "Turn-On" fluorescent sensor for selective Hg(II) detection in aqueous media based on metal-induced dye formation. Inorg. Chem. *45*, 10013–10015.