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A B S T R A C T

All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane
or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or per-
meating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics,
many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an
urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and
synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order
to identify what they have in common when they interact with bacterial lipid membranes. We find that they
virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of
curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding.
This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides
(AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences
of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained
on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified
classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in
membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical struc-
ture–activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there
exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.

1. Introduction

It is difficult to overestimate the problem posed by antibiotic-re-
sistant bacteria to global human health. Approximately 70% of hospital
acquired infections in the United States are resistant to at least one
antibiotic. Currently, over 2.8 million people acquire antibiotic-re-
sistant infections in the U.S. each year, of which >35,000 die as a result
[1]. Unfortunately, progress on antibiotic development has been slow.
In the last 20 years, only two new classes of antibiotics, oxazolidinones
and lipopeptides, have been approved for use, and there is already re-
sistance to both [2–4]. Indeed, the economic dimension of the problem
cannot be ignored. The costs associated with these infections in terms of

annual health care costs and productivity losses are estimated to be
upwards of $20 billion and $35 billion, respectively [5]. Moreover, it
takes over $500 million to develop an antibiotic but typically only a few
years elapse before the emergence of resistant strains, so the present
version of discovery-based approach to antibiotic development is not
necessarily sustainable. The growing gap between the decline of anti-
biotic development and the escalating emergence of bacterial drug re-
sistance has become one of the most salient challenges for human
health.
We aim to discover design principles implicit in cyclic antibiotics, a

growing class of promising antibiotics with activity against recalcitrant
Gram-negative bacteria. All antibiotics have to engage bacterial
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amphiphilic barriers by disrupting them outright and/or permeating
them and thereby allowing the antibiotic to get into bacteria: these
barriers include the lipopolysaccharide-rich outer membrane and the
phospholipid-based inner membrane. We study a diverse collection of
these cyclic antibiotics, some of bacterial origin and some synthetic, in
order to identify what they have in common when they interact with
bacterial membranes. These cyclic antibiotics include bactenecin,
polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids,
with some of these being hybrid molecules that include peptide-based
and non-peptide-based components. We find that these cyclic anti-
biotics virtually all have the ability to induce negative Gaussian cur-
vature (NGC) in bacterial membranes, the type of curvature geome-
trically required for permeation mechanisms such as pore formation,
blebbing, and budding. Interestingly, this ability to permeate bacterial
membranes is a common feature of antimicrobial peptides (AMPs),
which have retained antimicrobial activity despite prolonged co-evo-
lution with bacteria and comprise a key component of the eukaryotic
innate immune system [6]. We adapted our method for implementing a
recently developed machine-learning classifier trained on α-helical
AMP sequences [7] so that it can approximately account for non-pro-
teinogenic amino acids and non-amino acid-based hydrophobic struc-
tural elements. Using this modified classifier, we examine three pro-
totypical cyclic antibiotics: bactenecin, polymyxin B, and capreomycin.
The first two exhibit NGC-inducing ability experimentally, while the
third does not. The first and third are cyclic peptides, with the former
using proteinogenic amino acids and the latter using both proteinogenic
and non-proteinogenic amino acids. The second of the three is a hybrid,
a lipopeptide that contains a fatty acid chain and a cyclic peptide
composed of both proteinogenic and non-proteinogenic amino acids.
Although the classifier was not trained specifically on cyclic antibiotics,
it predicted that bactenecin and polymyxin B have the ability to induce
NGC in membranes, whereas capreomycin does not, in agreement with
experiments. Furthermore, the classifier was able to recapitulate pub-
lished empirical structure–activity relationships from alanine scans in
polymyxin B surprisingly well. Taken together, these results suggest
that there exists some common ground in the sequence design of hybrid
cyclic antibiotics and linear AMPs.
Before we describe our results, we provide a summary description of

the various cyclic antibiotics used in this study:
Bactenecin is a 12-residue cathelicidin AMP that is found in the

granules of bovine neutrophils and contains a disulfide bond, forming a
cyclic structure. It is the smallest known cationic AMP and exhibits
broad antimicrobial activity. Bactenecin has been shown to bind to LPS
and permeabilize both outer and inner bacterial membranes [8]. Al-
though bactenecin displays activity against both Gram-positive and
Gram-negative bacteria, it has greater potency against the latter [9].
A member of the polymyxins, polymyxin B is a natural cationic li-

popeptide antibiotic produced by Bacillus polymyxa and has been
clinically used as a last line of defense against multidrug-resistant
Gram-negative bacterial infections. Its structure consists of a peptide
ring that has a peptide side chain with a fatty acid tail. Like bactenecin,
polymyxin B has been shown to kill Gram-negative bacteria by binding
to the LPS of their outer membrane and permeabilizing both the outer
and inner membranes [10,11].
Octapeptins are a family of natural cyclic lipopeptide antibiotics

isolated from Bacillus circulans that have broad antimicrobial activity
against both Gram-positive and Gram-negative bacteria [12]. Despite
their discovery >40 years ago, octapeptins remain largely un-
characterized. The general octapeptin scaffold consists of a cyclic
peptide ring linked to a D-amino acid and a fatty acid tail.
The structures of both polymyxins and octapeptins feature a cyclic

peptide core that is linked to an N-terminal fatty acid chain. Both are
also characterized by a hydrophobic motif in their peptide ring. As
octapeptins generally possess fewer charges than polymyxins, they
feature increased hydrophobicity relative to the polymyxins.
A vast number of synthetic peptidomimetic compounds have been

developed to capture the conformations and functions of natural AMPs.
Among these are a class of sequence-specific oligomers of N-substituted
glycine called “peptoids” that feature cationic and hydrophobic side
chains similar to natural peptides [13]. Kirshenbaum peptoids C3 and
C124 are two potent antimicrobial cyclic peptoids that cause cell-sur-
face damage and form pores in bacterial membranes [14,15]. However,
additional antimicrobial mechanisms may also be involved.
Capreomycin is a natural polypeptide antibiotic from Streptomyces

capreolus that has been used in the treatment of tuberculosis. It is be-
lieved to exert its antimicrobial effects by inhibiting ribosomal protein
synthesis. For instance, studies suggest that capreomycin binds to and
inhibits the 16S rRNA of the 30S ribosomal subunit in Mycobacterium
tuberculosis [16,17]. Due to having similar intracellular activity and
nephrotoxic side effects, capreomycin is often compared and grouped
with animoglycosides. Accordingly, as aminoglycosides are unable to
freely cross cell membranes and thus must enter cells via endocytosis
[18–20], it is proposed that capreomycin similarly translocates through
a cellular uptake pathway [16]. Indeed, recent studies have found that
disruption of uptake regulators in Mycobacterium smegmatis result in
greater membrane permeability and susceptibility to aminoglycosides
and capreomycin [21].

2. Materials and methods

2.1. Preparation of lipid vesicles

Lyophilized phospholipids 1,2-dioleoyl-sn-glycero-3-phospho-(1′-
rac-glycerol) (sodium salt) (DOPG), 1,2-dioleoyl-sn-glycero-3-phospho-
L-serine (sodium salt) (DOPS), and 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) were purchased from Avanti Polar Lipids and
dissolved in chloroform at 20 mg/mL to produce individual lipid stock
solutions. Lipid compositions were prepared from the lipid stock solu-
tions as mixtures at specified molar ratios, evaporated under nitrogen,
and desiccated under vacuum overnight to form a dry lipid film. Lipid
films were resuspended in aqueous 140 mM NaCl, 10 mM N-(2-hy-
droxyethyl)piperazine-N′-ethanesulfonic acid (HEPES) (pH 7.4) to a
concentration of 20 mg/mL. Lipid suspensions were incubated over-
night at 37 °C, sonicated until clear, and extruded through a 0.2 μm
pore size Anopore membrane filter (Whatman) to form unilamellar
vesicles (ULVs).

2.2. SAXS experiments

Solubilized antibiotic compounds were mixed with ULVs at speci-
fied antibiotic-to-lipid charge ratios (Ac/Lc) and hermetically sealed
into quartz capillaries (Hilgenberg GmbH, Mark-tubes) for high-re-
solution small-angle X-ray scattering (SAXS) measurements taken at the
Stanford Synchrotron Radiation Lightsource (SSRL, beamline 4–2)
using monochromatic X-rays with an energy of 9 keV. A DECTRIS
PILATUS3 X 1M detector (172 μm pixel size) was used to collect the
scattered radiation and the resulting 2D SAXS power patterns were
integrated using the Nika 1.50 [22] package for Igor Pro 6.31 and
FIT2D [23].
The integrated scattering intensity I(q) was plotted against q. The

phases present in each sample were determined by comparing the ratios
of measured peak positions, qmeasured, with those of the permitted re-
flections for different crystal phases. The linear regression through
points corresponding to the peaks was then used to calculate the lattice
parameter, a, of each identified phase. For powder-averaged cubic
phases, each peak was represented by a point having coordinates of the
assigned reflection, in terms of Miller indices (h, k, l), and qmeasured. For
a cubic phase, = + +q a h k l(2 / ) ( )2 2 2 . The slope of the regression
of qmeasured vs + +h k l( )2 2 2 is 2π/a, which can then be used to
calculate a.
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2.3. Membrane activity predictions by an SVM classifier

Sequences listed in Tables 2 and 3 were evaluated for membrane
disruption activity using a previously validated support vector machine
(SVM) classifier [7]. The classifier outputs a probability value, P(+1),
for the peptide sequence to be membrane active. (Note that the original
classifier was trained with amino acid sequences only containing the 20
standard proteinogenic amino acids.) We approximated each cyclic
antibiotic using a linear peptide sequence based on the standard pro-
teinogenic amino acids. For antibiotic compounds that contain non-
proteinogenic residues, each non-proteinogenic residue is approxi-
mated with a proteinogenic amino acid that best represents the original
side chain (e.g., α,γ-diaminobutyric acid (Dab) was approximated with
lysine). The results from the SVM classifier are presented in Fig. 3A,
Tables 2 and 3.

3. Results and discussion

In this work, we studied experimentally seven cyclic antibiotics with
potent activity against Gram-negative bacteria: bactenecin, capreo-
mycin, polymyxin B, two octapeptin isomers, and two Kirshenbaum
peptoids (Fig. 1). Specifically, we investigated whether there are any
unifying features in how these cyclic antibiotics interact with mem-
branes. Using high-resolution synchrotron SAXS, we quantitatively
characterized the deformations induced by the antibiotics in model
bacterial membranes. ULVs were prepared from phospholipid mixtures
of DOPG, DOPS, and DOPE at distinct molar ratios to mimic the dif-
ferent lipid compositions of bacterial plasma membranes. Each anti-
biotic was incubated with ULVs at specified Ac/Lc charge ratios relative
to the isoelectric point, at which the charge of the antibiotic neutralizes
that of the membrane, and the resulting membrane structures were
characterized using SAXS. For each antibiotic, an Ac/Lc charge ratio can
be converted to a corresponding stoichiometric antibiotic-to-lipid molar
ratio (A/L). At a given Ac/Lc, the corresponding A/L value depends on
the net charge of the antibiotic. For the antibiotics in this study, Ac/Lc
of 1/2 and 1/1 (electroneutral) correspond to A/L ranges of 1/25 to 1/
15 and 1/50 to 1/30, respectively.

3.1. Cyclic antibiotics generate negative Gaussian curvature in bacterial
membranes

We found that at physiologically relevant conditions, all tested an-
tibiotics, except for capreomycin, restructured the lipid vesicles into
bicontinuous cubic phases rich in NGC (Fig. 2A,B). In contrast, the
control samples of ULVs only showed a broad characteristic feature
consistent with the form factor of ULVs (Fig. S1A). A large number of
AMPs have been recognized to exert their bactericidal effects by dis-
rupting bacterial membranes to form pores [24–28] and induce bleb-
bing [29,30], which can lead to membrane depolarization, leakage, and
cell lysis. A topological requirement shared by such membrane-desta-
bilizing processes is the generation of NGC in membranes. At a given
point on a surface, the maximum and minimum curvatures, which are
in orthogonal directions, are called the two principal curvatures, c1 and
c2. Curvature is defined as c = 1/r, with r being the radius of a circle
that best approximates the curve at that point. (By convention, a
membrane monolayer that bends to form a convex hydrophilic surface
is described as having positive curvature, whereas, a monolayer that
bends to form a concave hydrophilic surface is described as having
negative curvature.) Gaussian curvature, K, is the product of the prin-
cipal curvatures (K = c1c2) and becomes negative when one principal
curvature is positive and the other is negative. Thus, NGC characterizes
a surface that bends upward along one direction and bends downward
along the orthogonal direction, forming a saddle shape (Fig. 2C). NGC is
the specific type of curvature geometrically required in transmembrane
pores (Fig. 2D), fusion pores, and along the necks of budding vesicles.
AMPs have been observed to generate NGC in a large number of studies

[31–36]. NGC has been experimentally observed in other contexts
where peptide–membrane or protein–membrane interactions result in
membrane topological changes, such as cell-penetrating peptides
(CPPs), viral fusion peptides, viral budding proteins, metaphilic pep-
tides, and mitochondrial remodeling proteins [37–41].
Inverse bicontinuous cubic phases (QII) are among the range of

lyotropic liquid-crystalline phases that can be formed by lipid systems.
Of these, the Pn3m, Im3m, and Ia3d symmetries are three cubic phases
most commonly observed in biological membranes [42] (Fig. 2E). Each
of these cubic phases consists of two interpenetrating, but non-inter-
secting, aqueous volumes that are separated by a single continuous lipid
bilayer. For the Pn3m, Im3m, and Ia3d, the bilayer mid-plane traces the
D, P, and G minimal surfaces, respectively, and has NGC at all points on
its surface [43]. For a cubic phase, the average Gaussian curvature,
<K>, can be calculated from the equation <K> = (2πχ)/(A0a2),
where the Euler characteristic, χ, and the dimensionless surface area
per unit cell, A0, are geometric characteristics unique to each cubic
phase, and a is the lattice parameter of the unit cell. Specifically, for the
Pn3m, Im3m, and Ia3d cubic phases, χ = −2, −4, −8 and
A0 = 1.919, 2.345, 3.091, respectively.
Membranes of many Gram-negative bacteria, such as Escherichia

coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa often contain
high concentrations of phosphatidylethanolamine (PE) lipids [44–50].
ULVs with a representative lipid composition of 20/80 DOPG/DOPE to
model Gram-negative bacterial membranes were exposed to each an-
tibiotic compound (Ac/Lc = 1/1, A/L = 1/25–1/15) and measured
using SAXS (Fig. 2A, Table 1). For bactenecin, the SAXS spectra ex-
hibited correlation peaks with q-ratios of √2:√3:√4:√6:√8:√9, which
index to a Pn3m cubic phase with a lattice parameter of 23.11 nm and
average Gaussian curvature of −1.23 × 10-2 nm-2. For polymyxin B,
we observed peaks with q-ratios of √6:√8:√14, corresponding to an Ia3d
cubic phase (a= 37.67 nm, <K>=−1.15 × 10-2 nm-2). Octapeptin
isomers 1 and 2 both generated Ia3d cubic phases with respective lat-
tice parameters of 35.76 nm and 35.85 nm, and average Gaussian
curvatures of −1.27 × 10-2 nm-2 and −1.27 × 10-2 nm-2. Kir-
shenbaum peptoids C3 and C124 induced Ia3d (a = 37.32 nm, <K>
= −1.17 × 10-2 nm-2) and Pn3m (a = 16.67 nm, <K>
=−2.36 × 10-2 nm-2) cubic phases, respectively. These six antibiotics
that generated cubic phases also each induced a lamellar phase with a
low repeat distance (4.80–5.40 nm), indicative of a condensed lamellar
aggregate. Interestingly, the formation of such aggregates has been
suggested to facilitate the development of cubic phases [51].
Additional PE-rich lipid compositions also produced similar results

when incubated with the antibiotics (Ac/Lc = 1/1, A/L = 1/25–1/15).
For 20/80 DOPS/DOPE ULVs (Fig. 2B, Table 1), the scattering spectrum
for bactenecin contained peaks with q-ratios of √2:√3:√4, indicating the
presence of a Pn3m cubic phase (a= 17.30 nm, <K> = –2.19 × 10-
2 nm-2). Polymyxin B yielded peaks with q-ratios of √6:√8:√14, which
indexed to an Ia3d cubic phase (a = 37.47 nm, <K> = –1.16 × 10-
2 nm-2). Octapeptin isomers 1 and 2 both generated Ia3d cubic phases
(a = 35.76 nm, <K> = –1.27 × 10-2 nm-2 and a = 35.96 nm,
<K> = –1.26 × 10-2 nm-2, respectively). Similarly, the SAXS spectra
of Kirshenbaum peptoids C3 and C124 exhibited peaks that indexed to
Ia3d cubic phases with lattice parameters of 37.51 nm and 37.36 nm,
and average Gaussian curvatures of −1.16 × 10-2 nm-2 and
–1.17 × 10-2 nm-2, respectively.
Remarkably, the calculated amounts of average Gaussian curvature,

<K>, on the surfaces of the cubic phases induced by these six anti-
biotic compounds were comparable to those induced by many AMPs
[35,36]. Moreover, the capacity of these compounds to generate NGC is
consistent with their ability to kill bacteria via membrane disruption, a
trend that was previously identified among canonical AMPs and their
analogs [35,40,52–54]. This new finding supports the generality of
NGC-mediated bactericidal activity in structurally diverse natural and
synthetic antimicrobial molecules. Furthermore, all seven tested anti-
biotic compounds did not generate NGC in low-PE membranes (data not
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shown), which more closely mimic those of mammalian cells [55,56].
Together, these results suggest that their preferential activity against
bacterial membranes is at least in part due to membrane composition
differences among cell types.
Most strikingly, we found that of the tested antibiotics, capreomycin

did not generate NGC in the range of membrane compositions at phy-
siologically realistic conditions. While this result may at first seem at
odds with the behavior typical of AMPs and the other six tested com-
pounds, capreomycin's low membrane activity is in fact consistent with
its proposed mechanism of action. Similar to the aminoglycoside class
of antibiotics, capreomycin exerts its antimicrobial effects in-
tracellularly by inhibiting protein synthesis [16,17] and is believed to
gain entry into cells through a cellular uptake pathway [16,21]. Be-
cause neither of these processes would require antibiotic-mediated
membrane restructuring, it is not surprising that capreomycin was not
found to induce NGC and is therefore the “exception that proves the
rule.” However, the precise mechanism of action for capreomycin is not
fully understood, as the antibiotic is able to remain active against non-

replicating dormant bacteria with significantly reduced cellular uptake
[57].

3.2. Comparison of machine-learning predictions and empirical membrane
activity

We previously developed a machine-learning SVM classifier trained
to identify α-helical peptide sequences that have the capacity to re-
model membranes via NGC generation [7]. Moreover, the SVM has
been shown to be able to detect the existence of potential membrane-
active regions within larger protein sequences [41,58]. The classifier
exemplifies how computational methods can be used to predict the
function of a peptide or protein based on its sequence-derived physi-
cochemical properties, independent of sequence or structural
homology. This type of approach can therefore promote efficient, high-
throughput identification and design of new membrane-active peptide
sequences with effective antimicrobial activity. To explain briefly, from
a given amino acid sequence, based on 12 optimized physicochemical

bactenecin

polymyxin B

capreomycin

octapeptin isomer 1

octapeptin isomer 2

Kirshenbaum peptoid C3

Kirshenbaum peptoid C124

Fig. 1. Chemical structures of the cyclic antibiotics in this study.
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descriptors, the SVM outputs a score, σ, that specifies the distance of the
sequence from an 11-dimensional hyperplane trained to separate
known α-helical NGC-generating sequences from decoy sequences. A

sequence with a high positive σ score indicates a high probability that it
has the ability to induce NGC in membranes, while a large negative σ
score indicates a high probability that it lacks this membrane-
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restructuring ability. The σ score can then be converted to a probability
0 < P(+1) < 1 that the sequence is able to induce NGC. A strong
correlation was found to exist between P(+1) and the magnitude of
NGC generated [7].
At present, there is no known machine-learning classifier for eval-

uating cyclic peptide antibiotics that are composed of both proteino-
genic and non-proteinogenic amino acids. Moreover, there is not en-
ough available data to train such a classifier. Here, we explored the
possibility of adapting the SVM classifier we previously trained using
natural AMP sequences to estimate the membrane activity of cyclic
peptide-based antibiotic compounds via a few approximations. In
alignment with their in vitro bactericidal membrane-disruptive effects,
we have shown that the six cyclic antibiotics, bactenecin, polymyxin B,
octapeptin isomers 1 and 2, and Kirshenbaum peptoids C3 and C124,
are indeed capable of inducing NGC in model bacterial membranes.
While bactenecin is a short eukaryotic peptide with a disulfide bond,
polymyxin B, capreomycin, and octapeptin isomers 1 and 2 are non-
ribosomal polypeptide antibiotics that are composed of both standard
proteinogenic amino acids and non-proteinogenic amino acids, some of
which are further modified with additional functional groups. For in-
stance, polymyxin B and octapeptins make extensive use of non-amino
acid hydrocarbon-based hydrophobic tails [11,12]. Kirshenbaum pep-
toids C3 and C124 are synthetic peptidomimetics characterized by
having different structures based on poly-N-substituted glycines, and
are quite different from regular polypeptides. Therefore, to see how
well the SVM trained on AMPs can capture empirical trends of cyclic
antibiotics, we focus on three: bactenecin, polymyxin B, and capreo-
mycin. The first two exhibit NGC inducing ability experimentally, while
the third does not. We aimed to evaluate the antibiotic compounds with
the SVM classifier by approximating each cyclic molecule using a linear
peptide sequence with a composition limited to the 20 standard pro-
teinogenic amino acids (e.g., Dab, a non-proteinogenic lysine analog, is
substituted with lysine [59]), and incorporating hydrophobic residues
to account for additional hydrophobic functional groups (e.g., pro-
gressive incorporation of isoleucine to approximate alkyl chains)
(Table 2). For example, polymyxin B is a mixture of polymyxins, with
the main components being polymyxins B1 and B2 [60], which are
characterized by terminal fatty acids with hydrocarbon chains con-
taining 8 and 7 carbons, respectively. In the peptide analog of poly-
myxin B, we represented the fatty acid chain by using two consecutive
isoleucine residues, each of which has a 4‑carbon hydrocarbon side
chain. Using the SVM classifier on the peptide analogs for bactenecin,
polymyxin B, and capreomycin, we found that both bactenecin and
polymyxin B resulted in relatively high values of P(+1), indicating a
high likelihood of inducing NGC in membranes (Fig. 3A, Table 2). On
the contrary, the peptide analogs for capreomycin were not predicted to
be able to generate NGC, as reflected by their low P(+1) values. Al-
though the classifier is not trained on cyclic molecules, the SVM pre-
dictions for the peptide analogs are in surprising agreement with the

observed membrane-restructuring and NGC-generating ability of the
compounds (Fig. 3B).

3.3. The role of hydrophobic tails on the membrane activity of lipopeptide
antibiotics: polymyxin B as a case study

For the peptide-based cyclic antibiotics, utilizing simple linear
peptide analogs as inputs for the SVM yielded reasonable predictions of
their membrane activity. This finding thus introduces potential new
applications for the SVM as an informative tool for the analysis and
understanding of existing molecules and the rational design of new
ones. For instance, we can specifically examine polymyxin B, which
features a cyclic peptide core that is characterized by a high proportion
of cationic Dab residues and is linked to an N-terminal fatty acyl tail
(Fig. 1). To probe why polymyxin B contains a hydrophobic alkyl chain
in addition to a main peptide core, we modeled its peptide core using a
linear peptide analog and screened it for membrane activity with the
SVM classifier. The 10-amino acid long linear sequence (polymyxin
B–v0) representing the peptide component of polymyxin B was not
predicted to have a very high P(+1) score, in contrast with the sub-
stantially higher P(+1) values for the peptide analogs that contain
additional hydrophobic residues to account for the hydrophobicity
contributions from the alkyl chain (polymyxin B–v1, polymyxin B–v2)
(Fig. 3A, Table 2). This suggests that the peptide core of polymyxin B
alone is not capable of inducing the membrane disruption necessary for
bactericidal activity, but incorporation of the hydrophobic alkyl chain
will substantially raise the P(+1) values to the range in which that the
molecule is likely to generate NGC and can facilitate a broader stoi-
chiometric range over which it exhibits membrane activity (Fig. 3B). In
fact, this finding is consistent with previous work that has shown that
the removal of the fatty acid component of polymyxin B results in

Table 1
Cubic phases induced by cyclic antibiotics. The symmetries and lattice parameters of the cubic phases generated by the cyclic antibiotics in 20/80 DOPG/DOPE
and 20/80 DOPS/DOPE membranes, at both Ac/Lc = 1/2 (A/L = 1/50–1/30) and 1/1 (A/L = 1/25–1/15). Empty cells indicate the absence of cubic phases.

Antibiotic 20/80 DOPG/DOPE 20/80 DOPS/DOPE

Ac/Lc = 1/2
(A/L = 1/50–1/30)

Ac/Lc = 1/1
(A/L = 1/25–1/15)

Ac/Lc = 1/2
(A/L = 1/50–1/30)

Ac/Lc = 1/1
(A/L = 1/25–1/15)

Bactenecin Pn3m: 23.11 nm Pn3m: 17.30 nm
Polymyxin B Pn3m: 25.06 nm Ia3d: 37.67 nm Pn3m: 24.03 nm Ia3d: 37.47 nm
Octapeptin isomer 1 Pn3m: 20.61 nm

Im3m: 26.38 nm
Ia3d: 35.76 nm Pn3m: 24.15 nm Ia3d: 35.76 nm

Octapeptin isomer 2 Pn3m: 28.18 nm Ia3d: 35.85 nm Pn3m: 22.26 nm
Im3m: 28.49 nm

Ia3d: 35.96 nm

Kirshenbaum peptoid C3 Ia3d: 37.32 nm Ia3d: 37.51 nm
Kirshenbaum peptoid C124 Pn3m: 16.67 nm Ia3d: 37.36 nm
Capreomycin

Table 2
Peptide analogs for cyclic antibiotics and their P(+1) outputs from the
SVM classifier. Cyclic antibiotics were modeled using linear peptide sequences
composed of standard proteinogenic amino acids and evaluated by the SVM
classifier. As bactenecin is a peptide naturally composed of only proteinogenic
amino acids, its native sequence was used.

Antibiotic
modeled

Peptide analog
variant name

Peptide sequence P(+1)

Bactenecin N/A RLCRIVVIRVCR
(native)

0.981884801

Polymyxin B
(without fatty
acid chain)

Polymyxin B–v0 KTKAKFLKKT 0.008487151

Polymyxin B Polymyxin B–v1 IKTKAKFLKKT 0.601030492
Polymyxin B Polymyxin B–v2 IIKTKAKFLKKT 0.829476546
Capreomycin Capreomycin–v1 AKASKRKA 0.000295565
Capreomycin Capreomycin–v2 AKASKRNA 0.000272803
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significant loss of antimicrobial activity [61–64]. Accordingly, the in-
crease in antimicrobial activity as a result of greater hydrophobicity is a
well-documented general effect in both natural AMPs and their analogs
[25,65–69].

3.4. Machine-learning predictions of structure–activity relationships in
polymyxin B mutants and comparison with empirical alanine scans

The contribution of each amino acid to a given peptide's function is
often inferred by performing an alanine scan on the sequence. In this
manner, the peptide length is maintained while the predominant phy-
sicochemical contributions of each native amino acid are sequentially
removed. Given that the SVM classifier evaluates a peptide using key
learned physicochemical properties for membrane activity, it is natural
to ask whether such classifications are sensitive to in silico alanine scan
substitutions. As a case in point, we performed an alanine scan on the
polymyxin B peptide analog, polymyxin B–v2, sequence (IIKTKAKFL-
KKT) starting at the first lysine. The P(+1) outputs from the classifier
reflect the importance of cationic charges for membrane activity, as
indicated by the decreased scores when positively charged lysines are
substituted with alanines (Table 3). Interestingly, the scores agree with

the previously reported in vitro results of single alanine substitutions in
polymyxin B and their effects on antimicrobial activity. Specifically,
alanine substitutions of cationic Dab residues at positions 5 or 9 were
found to greatly reduce bactericidal activity of polymyxin B against E.
coli, as demonstrated by the increased minimum inhibitory concentra-
tions (MICs) of 16 nmol/mL and 4 nmol/mL, respectively, as compared
to native polymyxin B, which has an MIC of 1 nmol/mL [70]. Our SVM
classifier also predicted similar changes to antimicrobial activity, with
corresponding sequences #5 and #9 having lower P(+1) values of
~0.60 and ~0.46, respectively, in comparison with ~0.83 for sequence
#4 (Table 3). In addition, alanine substitution of Dab at position 3 of
polymyxin B was observed to have less impact on antimicrobial ac-
tivity, as evidenced by its MIC of 1 nmol/mL [70]. Our SVM prediction
for sequence #3 also shows this effect, with a P(+1) value of ~0.87.
Furthermore, SVM classifier predictions for alanine substitutions of
other polymyxin B residues also tracked well with their experimental
antimicrobial activities. Alanine substitution of threonine at position 2
led to a higher MIC [70], which is consistent with the lower P(+1)
value of peptide sequence #2. Alanine substitutions of leucine and
threonine at positions 7 and 10, respectively, resulted in little to no
change in MIC [70] and correspond to respective peptide sequences #7
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Fig. 3. Machine-learning predictions align with empirical membrane activity. (A) The SVM classifier output P(+1) values for the peptide analogs of bactenecin,
polymyxin B, and capreomycin. Polymyxin B–v0, a peptide analog representing the peptide component of polymyxin B, was not predicted to have membrane activity.
However, peptide analogs polymyxin B–v1 and polymyxin B–v2, which represent both the peptide and fatty acid chain components of polymyxin B, resulted in high P
(+1) values and are predicted to induce NGC. From their P(+1) values, bactenecin and polymyxin B, but not capreomycin, were predicted to induce NGC in
membranes. (B) The SVM predictions are in good agreement with the observed NGC-generating ability of the compounds and suggest that the hydrophobic fatty acid
chain in polymyxin B increases its membrane activity. Indeed, we observed a broader stoichiometric range (Ac/Lc = 1/2 and 1/1, A/L = 1/50 and 1/25) over which
polymyxin B generates NGC, in comparison with that of bactenecin (Ac/Lc = 1/1, A/L = 1/20 only). NGC values for Ac/Lc = 1/2 and 1/1 are depicted as solid and
striped bars, respectively.

Table 3
SVM predictions compared with empirical observations for alanine scans of polymxin B. Alanine scan sequences for peptide analog polymyxin B–v2 with their
corresponding analogous substitutions in polymyxin B [70] (if available) and corresponding P(+1) outputs from the SVM classifier. Each alanine substitution is
indicated in bold. The SVM classifier predictions agree well with the experimental antimicrobial activities of the alanine substitutions [70]. Alanine substitutions at
positions 2, 5, and 9 of polymyxin B, which led to the most notable reductions in observed antimicrobial activity, correspond to peptide sequences (#2, #5, and #9,
respectively) with decreased P(+1) values. Furthermore, alanine substitutions at positions 3, 7, and 10 resulted in little to no change in antimicrobial activity and
correspond to peptide sequences (#3, #7, and #10, respectively) that maintain high P(+1) values.

Peptide sequence index Peptide sequence Analogous substitution in polymyxin B [70] P(+1) Changes in empirically observed antimicrobial activity [70]

1 IIATKAKFLKKT Dab1A 0.592073833
2 IIKAKAKFLKKT T2A 0.755870297 Reduction
3 IIKTAAKFLKKT Dab3A 0.869940844 Minimal to no change
4 (polymyxin B–v2) IIKTKAKFLKKT 0.829476546
5 IIKTKAAFLKKT Dab5A 0.597315289 Large reduction
6 IIKTKAKALKKT (D-F)6(D-A) 0.784859991
7 IIKTKAKFAKKT L7A 0.814938477 Minimal to no change
8 IIKTKAKFLAKT 0.645279651
9 IIKTKAKFLKAT Dab9A 0.463844949 Reduction
10 IIKTKAKFLKKA T10A 0.906324927 Minimal to no change
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and #10, which maintain high P(+1) values. Collectively, these results
indicate that our improvised SVM classifier is able to recapitulate em-
pirical structure–activity relationships from alanine scans in polymyxin
B surprisingly well.

3.5. Comparative analysis of cyclic antibiotics with prototypical linear
membrane-active peptides

CPPs are peptides that are capable of efficient direct translocation
across cell membranes without causing lytic membrane damage. Like
AMPs, most CPPs are short, positively charged peptides that interact
with negatively charged membranes [71–76]. Both AMPs and CPPs
feature a high proportion of cationic residues and exert their mem-
brane-permeating effects via mechanisms that engage NGC generation
[35,37,77]. Due to their similarities, many have questioned whether
AMPs and CPPs actually should be categorized as two unrelated classes
[78,79]. In fact, increasing evidence indicates that some AMPs, in-
cluding LL-37 and magainin 2, possess the ability to cross cell mem-
branes [79–81], and certain CPPs, such as penetratin, display sig-
nificant antimicrobial activity [82,83]. This cross-functionality suggests
that AMPs and CPPs may not belong to two distinct peptide classes, but
rather comprise a larger family of membrane-active peptides that ex-
hibit a diverse range of antimicrobial activity and translocation ability.
If we consider AMPs and CPPs collectively, we can identify key

behavioral trends relating to their physicochemical properties and in-
duced membrane curvature. Studies have observed that on average,
AMPs are more hydrophobic than CPPs [37,84] (Table 4). Interestingly,
we found that the average magnitude of NGC, |<K>|, generated by
CPPs tends to be greater than that induced by AMPs. (For uniformity,
these comparisons are made typically with model membranes at lipid
compositions with 20% anionic lipids and 80% PE lipids with negative
intrinsic curvature.) Taken together, these trends point to an inverse
relationship between hydrophobicity and |<K>| among membrane-
active peptides. More specifically, we noted that AMPs, which are
characterized by greater hydrophobicity, most often generate modest
magnitudes of NGC, whereas CPPs typically have lower hydrophobicity
and higher magnitudes of NGC. Then by comparing the hydro-
phobicities and NGCs of the peptide-based cyclic antibiotics (bactenecin
and polymyxin B) with those of known AMPs and CPPs, we find that the
antibiotics indeed are more AMP-like than CPP-like. But can these
trends tell us more about the differences in behavior between AMPs and
CPPs? It has been suggested that for a membrane-active peptide, in-
creased hydrophobicity is associated with increased stability of the
membrane pore, presumably as a result of having longer membrane
residence times [37,85,86]. Therefore, it would make sense that AMPs,

being more hydrophobic and thereby forming stable pores, are gen-
erally found to be more lytic, in contrast to CPPs, which tend to create
transient pores and do not cause significant membrane damage
[65,87,88]. As we have found that the level of hydrophobicity can offer
temporal information about the produced membrane pore, we hy-
pothesize that the magnitude of NGC can provide clues about the spa-
tial character of the pore, given that additional hydrophobic insertion
can have steric consequences for the curvature of the resultant pore.
Previous groups have studied the effects of inserting a peptide or pro-
tein into a membrane and have found that, in response, a membrane
will typically alter its thickness to match that of the inclusion in order to
prevent energetically unfavorable exposure of its hydrophobic regions
to a hydrophilic environment and to relieve intramembrane stresses
and strains. This effect will often lead to changes in the membrane
thickness and curvature by stretching, compressing, or tilting the con-
stituent lipids [89–93]. However, we hypothesize there to be less
freedom for dimensional changes in the direction normal to the mem-
brane surface than laterally along the membrane surface due to the
inherent limitations of membrane thickness changes. Thus, for mem-
brane pores induced by AMPs or CPPs, we anticipate different magni-
tudes of NGC to be predominantly reflected in differences in pore size
(Fig. 2D). For example, we speculate that between two given peptides,
the one that induces a lower magnitude of NGC will exhibit a structural
tendency to produce a larger pore. Hence, in general, we would expect
larger pores for AMPs and smaller pores for CPPs. Remarkably, we
discover that this is in fact consistent with empirical measurements of
pore sizes for AMPs and CPPs. AMPs have been observed to create a
wide range of pore sizes, with diameters of 1.3–3 nm for melittin
[94,95], 2–5 nm for magainin [96,97], 2.3–3.3 nm for LL-37 [98],
2.5 nm for defensin human neutrophil peptide-2 [99], 4 nm for ce-
cropin [100], 4.6 nm for lacticin Q [101], and 9 nm for protegrin-1
[102]. In contrast, CPPs exhibit seemingly smaller pores, with HIV-TAT
producing 1.3–2 nm pores [103], 0.66 nm for polyarginine-9 [104], and
no detectable pores for pep-1 [105].

4. Conclusions

We examined a diverse collection of cyclic antibiotics, consisting of
bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum
peptoids, in order to identify what they have in common when they
interact with bacterial lipid membranes, using synchrotron X-ray dif-
fraction and machine-learning methods. We found that all except ca-
preomycin have the ability to induce NGC in bacterial membranes, the
type of curvature geometrically required for permeation mechanisms
such as pore formation, blebbing, and budding. To examine their usage

Table 4
Antibiotic membrane activity relative to that of known AMPs and CPPs. In general, AMPs are more hydrophobic than CPPs. However, we observe that the
average magnitudes of NGC, |<K>|, generated by CPPs tend to be greater than that of AMPs. Together, this suggests an inverse relationship between hydrophobicity
and NGC. Comparing the |<K>| induced by the cyclic antibiotics (in bold) and the average hydrophobicities of their respective peptide analogs, we see that their
membrane activities are more AMP-like than CPP-like.

Molecule |<K>| (10-2 nm-2)
20/80 DOPG/DOPE Ac/Lc = 1/1

|<K>| (10-2 nm-2)
20/80 DOPS/DOPE Ac/Lc = 1/1

Peptide Analog Variant
(for antibiotics) see Table 2 for
sequences

Peptide <Hydrophobicity>
(Eisenberg Consensus Scale)

Melittin (AMP) 1.85 −0.09
Polymyxin B 1.15 1.16 Polymyxin B–v1 −0.34

Polymyxin B–v2 −0.25
Bactenecin 1.23 2.19 −0.29
RTD-1 (cyclic AMP) 2.56 −0.35
BTD-1 (cyclic AMP) 2.56 −0.35
Crp-4 (AMP) 5.31 −0.36
HBD-3 (AMP) 5.02 −0.38
PG-1 (AMP) 4.62 −0.44
Penetratin (CPP) 2.59 −0.55
HIV TAT (CPP) 5.72 −1.23
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of amino acids compared to that in AMPs, we analyzed amino acid
sequences of bactenecin, polymyxin B, and capreomycin using a ma-
chine-learning classifier trained on α-helical AMP sequences. Although
the classifier was not trained on cyclic antibiotics or peptides con-
taining non-proteinogenic amino acids, a modified implementation
correctly predicted that bactenecin and polymyxin B have the ability to
induce NGC in membranes, while capreomycin does not. Moreover, a
modified approach to implementing the classifier was able to re-
capitulate empirical structure–activity relationships from alanine scans
in polymyxin B surprisingly well. Taken together, these results suggest
that the sequence design of hybrid cyclic antibiotics and linear AMPs
are cognate.
Supplementary data to this article can be found online at https://

doi.org/10.1016/j.bbamem.2020.183302.
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