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I. INTRODUCTION

Water’s interactions with other molecules are what make it an important liquid
in chemistry and biology. The overall neutral water molecule carries fractional
positive charges on its hydrogen atoms and a negative charge on its oxygen, giving
the molecule a strong dipole moment. Water molecules donate or accept electron
density to form strongly oriented hydrogen bonds with ions. The direction of charge
transfer depends on the sign of the overall ionic charge. Water has also strong
electrostatic interactions with polarizable solutes and reorganizes its hydration
structure around changes in solute charge density. Examples of the importance of
solvation interactions in water are numerous.

At an interface, hydration depends on the surface’s structure and chemical
composition. Some metals such as platinum can break covalent bonds in water
molecules [1]. Hydrophilic surfaces interact so strongly with interfacial water that
the local viscosity can increase many orders of magnitude in the first molecular
layers [2, 3], while possessing near bulk fluidity in subsequent layers [4, 5]. At
present, the dynamics and structure of water at hydrophobic surfaces [6–8] is still
being debated.

Chemical reactions are regulated by the hydration environment surrounding
nearby reactants. Electron transfer occurs in redox pairs when the surrounding
water molecules fluctuate to a configuration that facilitates the exchange [9]. The
wide range of effects different ions have on the structure of solvent water has strong
implications on the solubility of proteins. This little understood phenomenon is
known as the Hofmeister effect [10].

Protein structure and function is dominated by its interaction with water. A pro-
tein’s function is defined by its amino acid side groups, which have different shapes,
sizes, and degrees of hydrophobicity or hydrophilicity. The way a protein folds,
catalyzes chemical reactions, and interacts with other proteins strongly depends
on its interaction with water. The structure and dynamics of the interfacial water
affect the protein’s stability and function [11]. On larger scales, macromolecular
self-assembly is driven by hydrophobic and amphiphilic interactions. Biological
structures from membranes [12] to amyloid fibrils [13] are the consequence of
water–molecule interactions.

The static structure and hydrogen bonding network of liquid water is in-
vestigated by scattering and absorption experiments. X-ray and neutron scatter-
ing measure the intermolecular pair correlation functions of water that describe
the distribution of water molecules relative to each other [14, 15]. Neutron
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scattering can also discriminate between atomic pairs to yield the correlation func-
tions for pairs of atoms (H–H, O–O, and O–H) due to its high sensitivity to hydro-
gen atoms [16]. These functions elucidate the relative positions and orientations
of water molecules in the bulk. X-ray absorption spectroscopy probes the local hy-
drogen bonding environment of water in different thermodynamic conditions by
comparing measured absorption spectra to that for ice [17, 18]. In solute–solvent
systems, neutron scattering has also been utilized to reconstruct the static three-
dimensional hydration structure around small molecules, such as methanol [19]
and noble gases like krypton [20], by measuring the concentration dependence of
the interatomic pair correlation functions. The effect ions in solution have on the
hydrogen bonding network of water has been studied by XAS measurements as
well [21].

Pump-probe IR spectroscopy provides sufficiently high resolution to determine
the molecular dynamics of water. Femtosecond resolution is important to these
measurements because virtually all molecular-scale dynamical processes in water
occur on timescales of tens of femtoseconds to a few picoseconds. The ability to
create distinct pulses of IR radiation that are separated by tens of femtoseconds
allows the observation of these processes. This technique has been used to measure
fundamental dynamics in water, such as orientational lifetimes of water molecules
[22] and the dynamics energy transfer through the hydrogen bond network [23].
The bond length dependence of a mode’s IR absorption allows it to be used as a
“spectroscopic ruler” to observe the hydrogen bond O–O oscillation period in water
[24]. For solute–solvent systems, pump-probe experiments dynamically monitor
the characteristic absorption frequencies of different modes in the presence of ions
and other molecules. Other experiments excite the electronic state of the solute
molecule itself and monitor the dynamical response of the surrounding solvent. A
solute molecule, such as a chromophore, can be photoexcited or photoionized to
change its underlying charge structure. An absorption or pump-probe experiment
then determines the changes in the solvent’s IR spectra in response to the change
in solute charge density [25–27].

While experimental techniques have provided many high-resolution measure-
ments of static or dynamical properties of water, achieving high resolution in one
category has typically meant poorly resolved measurements in the other. X-ray
scattering can measure the pair correlation function of water to sub-Å resolution,
but it integrates over a large sample volume and measurement times much larger
than molecular timescales. The result is a time-averaged structure. Likewise, mea-
surements of the intermolecular hydrogen bond oscillation give little information
about the intermolecular structure of water on these timescales. For the most part,
one is forced to choose between high temporal and high spatial resolution.

Inelastic X-ray scattering (IXS) is a hybrid scattering and spectroscopic
technique that simultaneously measures structural and dynamical properties of
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Figure 1. Collective
modes in water have been
previously measured using
IXS. In this 1996 mea-
surement, the sound mode
was mapped out to q =
14 nm−1. Reprinted with
permission from Ref. [30].
Copyright 1996 by the
American Physical Society.

condensed systems. As in typical X-ray scattering, the momentum transfer to the
system is determined by the scattering angle between the incident and scattered
photons. In addition, IXS incorporates spectroscopic discrimination to measure
the energy gain or loss of scattered photons. IXS spectra are measurements of
the dynamical structure factor S(q, ω). Because momentum and energy transfer
are conjugate variables of spatial and temporal periodicity, respectively, S(q, ω)
is the time and space Fourier transformed measure of density fluctuations in a
system. High-intensity third-generation synchrotron X-ray sources have enabled
the development of meV-resolution IXS spectrometers that can measure atomic
density–density correlation functions. These instruments have been used to the
study of collective modes in liquid water (Fig. 1), which has demonstrated that
water behaves more like a solid than a liquid on short length scales [28]. It has
also shown that these density fluctuations are due to center of mass motions rather
than bond or rotational motions [29, 30].

Abbamonte et al. [31] established that a full measurement of S(q, ω) in water
can be “inverted” to recover the density response function χ(q, ω), which quanti-
fies the effect of an external perturbation on the surrounding hydration medium.
The inversion requires a solution to a phase problem that only the imaginary part
of χ(q, ω) is directly related to S(q, ω). They demonstrated that Kramers–Kronig
(KK) relations are the solution to this phase problem and can be used to recover the
real part from IXS measurements. The full complex-valued χ(q, ω) was Fourier
transformed to produce the time and space density response function χ(r, t). In
linear response (LR), χ(r, t) is a Green’s function that facilitates the imaging of
the induced charge density in water surrounding model charge distribution. The
transferred energies measured in this work were on the scale of electron volts
(eV), corresponding to the attosecond (10−18 s, resolution related to energy by
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�t = π�/Emax) dynamics of electronic excitations. They used the recovered re-
sponse function to image the response around model charge densities, similar to
an ideal chromophore and a relativistic heavy ion.

Here, we review the application of Kramers–Kronig relations to meV-resolution
IXS measurements of S(q, ω) to extract the density–density response function
χ(q, ω). For this energy range, S(q, ω) describes the spectrum of atomic density
fluctuations in a system. Assuming that the transferred energy is small enough to
leave the molecular electron density unperturbed (the adiabatic approximation),
S(q, ω) reflects the spectrum of fluctuations of charge density in a medium [32].
IXS can be used to measure the meV-resolution dynamic structure factor of liquid
water and invert it to recover the density response function χ(q, ω) for dynamics
on femtosecond (10−15 s) timescales. S(q, ω) can be measured to sufficiently high
energy (Emax = 80 meV) and momentum transfers (qmax = 7.2 Å−1) to attain
26 fs temporal and 0.5 Å spatial resolution for the inverted Green’s function.
This can be used in the same linear response formalism to image the hydration
structure around dynamical charge densities in water for time and length scales
corresponding to molecular motion and structure. Though the general protocol is
similar to the eV-scale studies, the profile of S(q, ω) and the underlying physical
processes are very different and require special experimental consideration.

In Section II, we review the theoretical definitions of the dynamic structure
factor S(q, ω) and the density response function χ(q, ω) with respect to scattering.
The Kramers–Kronig relations are derived in this context as well. We also present
the general features and experimental considerations of an meV-IXS instrument. In
Section III, we detail the inversion of an extensive measurement of the meV-scale
dynamical structure factor of liquid water, complete with discussion on how to treat
the data for experimental artifacts. The results of “proof of concept” diagnostic
tests of the measured χ(r, t) are described, and the results are compared with other
static and dynamical direct measurements. We also show how χ(r, t) can be used as
a Green’s function to reconstruct femtosecond movies of the dynamical hydration
structure around a prototypical moving charge in water. To reconstruct the solvation
structure around realistic ionic and molecular solutes, a simple implementation of
excluded volume is proposed in Section IV. Static and dynamical calculations are
compared with the results of simulations and measurements. Finally, we consider
the range of validity of the GFID technique. We examine systems in which linear
response theory fails and discuss potential directions for improving it.

II. REVIEW OF HIGH-RESOLUTION INELASTIC X-RAY
SCATTERING ON LIQUID WATER: THEORY AND EXPERIMENT

IXS measures the spectrum of density fluctuations in condensed matter systems,
such as liquids and solids. Excitations such as phonons and plasmons can be
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observed by selecting the appropriate energy and momentum transfer ranges for
observation [33, 34]. The arrival of intense third-generation synchrotron X-ray
sources has made high-resolution (�E ≈ 1 meV) IXS feasible, in part due to
the narrow bandwidth required for such measurements. For example, the energy
resolution of IXS measurements was insufficient to observe the low energy transfer
characteristic of phonon modes (∼10–100 meV) in crystals until the early 1980s
[35] and the resolution required to observe collective modes (�E ≈ 1 meV) in
liquids was not achieved until the mid-1990s [29].

There are many reviews of inelastic scattering as a technique to study a broad
range of elementary excitations in condensed matter systems [33, 34, 36–38]. Here,
we introduce the physics of IXS with an emphasis on meV-resolution experiments
used to observe collective modes in disordered systems such as liquids. We include
a brief discussion of a high-resolution IXS instrument.

A. Static Structure from Elastic X-Ray Scattering Experiments

Typical X-ray scattering experiments measure the intensity of X-rays scattered by
a sample as a function of the momentum transferred to the system. The measured
quantity is the scattering intensity I(q), a function of the momentum transfer q.
Momentum is the conjugate variable of position, so I(q) yields information about
the relative positions between scatterers (atoms, molecules, etc.) in the sample.
An X-ray of initial momentum ki = (2π/λ)k̂i is scattered by a sample to a final
momentum kf . The momentum transfer q is the difference between these, kf − ki.
The convention for describing scattering processes is illustrated in Fig. 2. For
studies of static structure, elastic scattering is employed, so the magnitude of the
initial and final momenta, and therefore the wavelength, is conserved:

|kf | = |ki| = 2π

λ
(1)

The magnitude of q (to be referred to as q) is then determined by λ and the scattering
angle θsc,

q = 2ki sin
θsc

2
= 4π

λ
sin

θsc

2
(2)

k i

k f

kf

θsc

q = ki – kf
Figure 2. An X-ray with initial

momentum ki is incident on a sample
and scattered by an angle θsc to a final
momentum ki. The momentum trans-
ferred to the sample is q = ki − kf .
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The scattered intensity for bulk atomic and molecular systems is proportional
to the product of the square of the form factor F (q) and the structure factor
S(q) [37, 39],

I(q) ∝ |F (q)|2S(q) (3)

F (q) is the Fourier transform of the scattering potential of the basis scattering unit,
similar to an assembly of atoms or a molecule.

In real space, the number density at a given position n(r) is

n(r) =
N∑

i=1

δ (r − ri) (4)

where ri is the position of the ith particle. S(q) is the Fourier transform of the
density–density correlation function

〈δn(r)δn(r′)〉 = 〈[n(r) − 〈n(r)〉][n(r′) − 〈n(r′)〉]〉
where 〈. . . 〉 represents the ensemble average value. This is also the pair correlation
function g(r, r′),

g(r, r′) = 〈∑rα /=r′ δ(r − rα + r′)〉
〈n〉 (5)

which can be understood in the following way: given that there is a particle at
r′, g(r, r′) is the average number of particles at the position r, excluding its self
contribution [37]. Typically, r′ is chosen to be the origin without loss of generality,
and g(r) is written only as a function of the position r.

The structure of a crystal is determined by Bragg diffraction. With the assump-
tion that scatterers are fixed at positions on a lattice, the interference between lattice
planes causes the scattered intensity to be nonzero only in the neighborhood of
specific values of q such that

rhkl × q = 2π (6)

where {rhkl} is the set of normal vectors defining the lattice planes. This can be
understood from the definition of the pair correlation function in Eq. (5). For a
given scatterer, there are discrete vectors at which another scatterer will be found.
For a crystal, the set of momentum transfer vectors {qhkl} that satisfy Bragg’s law
[Eq. (6)] are the reciprocal space representation of the crystal lattice [40, 41]. The
measured intensity of scattered X-rays forms sharp peaks at the discrete q positions
{qhkl}.

The scattered X-ray intensity is no longer comprised of sharp peaks for disor-
dered systems like liquids. The scatterers are diffusively mobile and can be found
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Figure 3. The static pair
correlation function g(r) of room-
temperature liquid water. This ex-
ample ofg(r) was calculated from
data published in Ref. [42].

at any distance from one another. The pair correlation function g(r), structure
factor S(q), and the scattered intensity I(q) are also continuous and only show
structure for length scales of a few molecular diameters. In isotropic liquids, these
quantities depend only on the magnitude of the position or momentum vectors:
I(q) → I(q), S(q) → S(q), and g(r) → g(r). Figure 3 shows the pair correlation
function g(r) of room-temperature liquid water as calculated from published struc-
ture factor measurements [42]. The peaks in g(r) correspond to hydration shells
with the first found roughly 2.8 Å from the center of a given water molecule. For
static X-ray scattering, the pair correlation function g(r) is the most information
that can be extracted experimentally.

B. Dynamic Structure from Inelastic X-Ray Scattering Experiments

Like momentum and position, energy and time are a pair of conjugate variables.
IXS combines the momentum transfer measurements of static X-ray scattering
with spectroscopic discrimination of scattered photons to measure the struc-
ture and dynamics of density fluctuations simultaneously. The energy loss or
gain of a scattered photon provides information on the dynamics of the scat-
terers on the corresponding timescales. The measured intensity I(q, ω) is pro-
portional to the dynamical structure factor S(q, ω), the time and space analogues
of the static structure factor S(q) previously introduced. S(q, ω) describes the
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spectra of correlated density fluctuations in a system and is the time and space
Fourier transform of the time-dependent density–density correlation function
〈δn(r − r′, t − t′)δn(r′, t′)〉 [36]. Liquid water is isotropic, so S(q, ω) = S(q, ω)
and is the Fourier transform of the isotropic time-dependent density–density cor-
relation function 〈δn(|r − r′|, t − t′)δn(|r′|, t′)〉.

In this section, we introduce the concepts of the dynamic structure factor and
linear response theoretically. This allows the direct derivation of their relationship
to help clarify the procedure for recovering the linear response function χ(q, ω)
from measurements of S(q, ω). This discussion follows closely several seminal
reviews on the topic [33, 34, 36, 37].

The quantum mechanical operator δnq describes the Fourier component of the
density δn(r) = n(r) − 〈n〉: δnq = ∑

i e
ıq·ri , where the sum is over all particles in

the system and ri is the position of the ith particle. The time-dependent density
operator δnq(t) evolves according to the Hamiltonian Ĥ , δnq(t) = eıĤtδnqe−ıĤ t .

For a system at finite temperature T , the dynamic structure factor S(q, ω) is the av-
erage over all possible initial and final states of the system |i〉 and |f 〉, respectively.
S(q, t) is defined as

S(q, t) =
∑

i

e−βEi

Z
〈i|δn†q(t)δnq(0)|i〉

=
∑

i

e−βEi

Z
〈i|e−ıĤ tδn†qeıĤtδnq|i〉

=
∑

i

∑
f

e−βEi

Z
〈i|e−ıĤ tδn†qeıĤt|f 〉〈f |δnq|i〉

=
∑
i,f

e−βEi

Z
e−ı(Ei−Ef )t〈i|δn†q|f 〉〈f |δnq|i〉

=
∑
i,f

e−βEi

Z
e−ıωt|(δnq)fi|2 (7)

where Ei and Ef are the energies corresponding to states |i〉 and |f 〉, and the energy
transfer is defined as ω = (Ei − Ef ). β is the inverse of temperature (kBT )−1. The
prefactor e−βEi/Z is the Boltzmann distribution probability that the system is in
state |i〉, and Z = ∑

i e
−βEi is the partition function. From this definition of S(q, t),

it is clear that it is the inverse Fourier transform of the dynamic structure factor
S(q, ω),

S(q, ω) =
∑
i,f

e−βEi

Z
|(δnq)fi|2δ(ω − (Ei − Ef )) (8)
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Transposing the initial and final states demonstrates an important property of
S(q, −ω),

S(q, −ω) =
∑
i,f

e−βEf

Z
|(δnq)fi|2δ(−ω − (Ef − Ei))

=
∑
i,f

e−β(Ef −Ei) e
−βEi

Z
|(δn−q)fi|2δ(−(ω − (Ei − Ef )))

= e−βωS(−q, ω) (9)

Because the scattering cross section is invariant for q → −q,

S(q, −ω) = e−βωS(q, ω) (10)

which is a statement of detailed balance. The relative probability that the system
is initially in state |i〉 rather than in state |f 〉 is the ratio of their Boltzmann factors,
e−βEi/e−βEf = e−βω.

A linear response theory assumes that the influence of a small perturbation on
the system causes a response in the system that propagates through the fluctuation
modes encapsulated by S(q, ω). The goal is to find a linear response function
χ(q, ω) that relates the external perturbation φ(q, ω) to the induced density in the
system δnind(q, ω):

δnind(q, ω) = χ(q, ω)φ(q, ω) (11)

φ(q, ω) is assumed to be a real, scalar potential field that interacts with density
fluctuations via a Hamiltonian of the form

Ĥ = eζt
(
δn†qφ(q, ω)e−ıωt + δnqφ(q, ω)eıωt

)
(12)

where the term eζt enforces that the perturbation is “turned on” sufficiently slowly
so as not to cause transitions in the system that will force it out of its unperturbed
state, also known as the adiabatic approximation. ζ is assumed to be sufficiently
small that the limit (ζ → 0) can be taken in the end. It can be shown that the
Hamiltonian describing interactions between electromagnetic fields and matter is
of the form shown in Eq. (12) [34, 43].

Through first-order perturbation theory [36], it is shown that the linear response
function χ(q, ω) is

χ(q, ω) =
∑
i,f

e−βEi

Z
|(δnq)fi|2

{
1

ω − ωfi + ıζ
− 1

ω + ωfi + ıζ

}
(13)
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By utilizing the Dirac relation [36],

lim
ζ→0

1

x + ıζ
= P

(
1

x

)
− ıπδ(x) (14)

the limit for χ(q, ω) can be taken for ζ → 0,

χ(q, ω) =
∑
i,f

e−βEi

Z
|(δnq)fi|2

×
{[

P
(

1

ω − ωfi

)
− ıπδ(ω − ωfi)

]
−

[
P

(
1

ω + ωfi

)
− ıπδ(ω + ωfi)

]}
(15)

Equation (15) can be rewritten to express the response function as the sum of real
and imaginary parts: χ(q, ω) = χ′(q, ω) + ıχ′′(q, ω), where

χ′(q, ω) =
∑
i,f

e−βEi

Z
|(δnq)fi|2

{
P

(
1

ω − ωfi

)
− P

(
1

ω + ωfi

)}
(16)

and

χ′′(q, ω) = −π
∑
i,f

e−βEi

Z
|(δnq)fi|2

{(
δ(ω − ωfi) − δ(ω + ωfi)

)}
(17)

Combining Eqs. (8) and (17) provides an important result

χ′′(q, ω) = −π{S(q, ω) − S(q, −ω)} (18)

This relationship between χ′′ and S is a mathematical expression of the fluctuation-
dissipation theorem, which states that for sufficiently small perturbations, the dis-
sipative response in the system is carried out by the same modes that govern its
equilibrium fluctuations. χ′′(q, ω) is called the dissipative part of the response
because it is proportional to the work done by the perturbation on the system
[37]. This equality reveals that the imaginary part of the response function can be
directly measured from scattering experiments. This statement of the fluctuation-
dissipation theorem is the central idea underpinning the extraction of dynamics
from inelastic scattering data.
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The relationship between real and imaginary parts of χ(q, ω) comes directly
from their definitions. χ′(q, ω) can be rewritten as an integral over ω′,

χ′(q, ω) =
∫ ∞

−∞
dω′ ∑

i,f

e−βEi

Z
|(δnq)fi|2δ(ω′ − ωfi)

×
{
P

(
1

ω − ω′

)
− P

(
1

ω + ω′

)}

=
∫ ∞

−∞
dω′S(q, ω′)

{
P

(
1

ω − ω′

)
− P

(
1

ω + ω′

)}
(19)

The two principal arguments can be evaluated in separate integrals:

χ′(q, ω) =
∫ ∞

−∞
dω′S(q, ω)P

(
1

ω − ω′

)
−

∫ ∞

−∞
dω′S(q, ω)P

(
1

ω + ω′

)
(20)

Taking ω′ → −ω′ in the second integral and using Eq. (18),

χ′(q, ω) = − 1

π

∫ ∞

−∞
dω′χ′′(q, ω′)P

(
1

ω − ω′

)
(21)

This expression relating the real and imaginary parts of the complex-valued re-
sponse function χ(q, ω) is an example of a Kramers–Kronig relation. A similar
argument relates the imaginary part of χ to the real part by

χ′′(q, ω) = 1

π

∫ ∞

−∞
dω′χ′(q, ω′)P

(
1

ω − ω′

)
(22)

While the KK relations were derived here in terms of the density–density response
function S(q, ω), they are general for all causal response functions. A general
derivation of the KK relations can be found elsewhere [36, 37, 44], but the deriva-
tion with respect to the measurable quantity S(q, ω) is more relevant here.

The double differential scattering cross section of a photon scattering from a
state ki, αi to kf , αf and from the system state |i〉 to |f 〉 is derived from Fermi’s
golden rule [33]

d2σ

d�dEf

= r2
0(εαi · εαf

)2
(

Ei

Ef

) ∑
i

∑
f

|
〈

f |
∑

j

eıq·rj |i
〉

|2δ (
ω − (Ei − Ef )

)
(23)

where r0 is the classical electron radius, εαi and εαf
are polarization vectors,

ω = �ki − �kf , and q = ki − kf . The sum over j is equal to the density operator
δnq, and by renaming the matrix element 〈f | ∑j eıq·rj |i〉 = (δnq)fi, the scattering
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cross section is shown to be proportional to the dynamic structure factor S(q, ω)
[Eq. (8)]:

d2σ

d�dEf

= r2
0(εαi · εαf

)2
(

Ei

Ef

)
S(q, ω) (24)

Equation (24) shows that to first-order, inelastic X-ray scattering measures the
dynamic structure factor of electron density fluctuations in a system of charges.
A measurement of S(q, ω) can be used to recover the linear response function
by directly applying the fluctuation-dissipation theorem and Kramers–Kronig
relations.

In a system such as water, the form of the perturbation comes from the Coulomb
potential of an external charge distribution,

φ(q, ω) = 4πe2

q2 next(q, ω) (25)

where next(q, ω) is the time and space Fourier transformed external charge density.
The electrodynamical linear response function is [31]

nind(q, ω) = 4πe2

q2 χ(q, ω)next(q, ω) (26)

It follows from this that the recovered response function χ(q, ω) derived from
S(q, ω) and the Kramers–Kronig relation is related to the frequency- and
wavevector-dependent dielectric constant ε(q, ω) [36]:

1

ε(q, ω)
= 1 + 4πe2

q2 χ(q, ω). (27)

In this case, χ(q, ω) propagates the charge induced in the system by an external
charge distribution.

Our interest is the dynamics of molecular reorganization in liquid water. Energy
scales relevant to these modes in liquids (meV) are much smaller than those rele-
vant to plasmonic modes, particle–hole excitations, and ionization. Two assump-
tions are necessary to assert the equivalence of x-ray scattering measurements and
molecular dynamics. First, the electron and nuclei wavefunctions are separable
by the Born–Oppenheimer approximation. Second, the energy transfer is so small
that it does not affect the electron wavefunction and therefore the electron density
of a molecular scatterer. With these assumptions, the dynamical structure factor
measured by inelastic X-ray scattering at meV energy transfers corresponds to
fluctuations in the center of mass charge density in the system [33, 43].
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C. Experimental meV Inelastic X-Ray Scattering

The layout of a meV-resolution IXS instrument is shown in Fig. 4. While the
specific construction of each meV IXS instrument is unique, they share the same
general design. Each requires (1) a tunable meV-resolution monochromator, (2)
spherical analyzer crystals that reflect particular X-ray energies with meV resolu-
tion, and (3) a long, rotatable arm to measure momentum transfer/scattering angle.
In this section, we provide a basic description of these components, with particular
examples drawn from the high-resolution inelastic X-ray scattering spectrome-
ter at beamline ID-28 at the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France [45]. The data set presented in later sections was collected on
this instrument. Also included is a discussion of the practical considerations for
measuring and analyzing meV IXS data.

The energy of X-rays incident on the sample is defined by a tunable meV-
resolution monochromator. The energy of synchrotron X-rays is typically ∼20
keV, with a typical energy bandwidth of 1 eV. To get 1 meV resolution (a 1000 ×
reduction), a highly selective monochromator system must filter most of the “white
beam” intensity and transmit only a narrow band. This is done by scattering the
beam off crystals with well-defined orientations and choosing a particular cross
section of the scattered beam. A monochromator utilizes the fact that X-rays with

(A) Si(111) premonochromator

(B) Si(hhh) monochromator

(C) Focusing mirror

(D) Sample

(E) Analyzer

(F) Counter
θsc

Incoming beam
from synchrotron

Figure 4. A schematic drawing of a meV-resolution IXS beamline. The incoming beam is first
incident on the premonochromator (A) to reduce the bandwidth of the beam to �E/E ∼ 10−4. At
the IXS beamline at ESRF, the premonochromator is comprised of a cryogenically cooled pair of
Si crystals oriented to reflect the beam along their (111) Bragg reflections. Next the high-resolution
monochromator (B) is positioned so that its (hhh) Bragg reflection backscatters the meV-resolution
beam at an angle of 89.98◦. A focusing mirror (C) routes the beam into the hutch. It focuses the beam
to roughly (200 �m)2 at the sample position (D). X-rays scattered by the sample at an angle of θsc

are reflected by the analyzer (E) to the counter (F). The Bragg reflection of the analyzer is chosen to
match the (hhh) reflection of the monochromator to match the energy resolutions. Details of the ESRF
beamline can be found in Ref. [45] and references therein.
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different energies scatter from the same Bragg reflection at different angles. For
ID-28, 1 meV configuration has the premonochromaticized 21 keV beam scat-
ter off the (11,11,11) reflection of a cryogenically cooled Si crystal (θ = 89.98◦)
[45]. Because the scattering angle is so high, the configuration is referred to as a
backscattering monochromator. This monochromator should also be tunable so that
the incident energy can be chosen or scanned for an experiment. At ID-28, precise
micro-Kelvin (�K) control of the monochromator temperature allows continuous
control of the Si crystal’s lattice constant through thermal expansion. This mecha-
nism tunes the energy of X-rays selected from the chosen Bragg reflection, Emono.
To enable precise control of the crystal temperatures, the meV IXS monochroma-
tor comes after a coarser monochromator has already reduced the beam’s energy
spread. This decouples much of the heat load that comes from X-ray energy loss
in the crystals from the high-resolution monochromator.

A spherical analyzer crystal is required to reflect scattered X-rays of a fixed
energy to the X-ray detector. Typical meV IXS experiments measure over a par-
ticular energy transfer range (e.g., −50 to 50 meV). The analyzer is positioned
to reflect X-rays of a fixed energy Ea to the counter, while the monochromator
scans over the absolute energy range Emono = Ea − 50 meV to Emono = Ea + 50
meV. The energy transferred to the sample is simply Ea − Emono. The analyzer is
spherical to reflect all scattered X-rays to a focus at the detector. At ID-28, five
analyzers positioned roughly 0.35 Å−1 apart in reciprocal space are constructed
from small crystals glued to a curved substrate and matched to the Bragg reflection
of the high-resolution monochromator [45]. The curved scattering geometry of the
analyzer allows it to focus the incident X-rays with adequate precision to use mul-
tiple analyzers on the same spectrometer. The instrument at ID-28 measures IXS
spectra with five analyzer/detector pairs at different q positions simultaneously.

The analyzer’s q-position is determined by a rotating arm. The arm is typically
very long to reduce the analyzer’s angular acceptance of scattered X-rays. The arm
length and maximum angle are determined by the construction of the beamline.
The analyzers are fixed at the end of the arm, which rotates with the sample position
at its center. For example, at ID-28, the 7 m arm rotates out to a maximum angle
of 30◦, which yields a maximum q-value of 6.0 Å−1 for X-ray energy ≈25 keV.

The intensity measured by an inelastic X-ray scattering experiment is propor-
tional to the dynamical structure factor S(q, ω) broadened by the resolution profile
of the instrument R(ω):

I(q, ω) ∝
∫ ∞

−∞
R(ω − ω′)S(q, ω′)dω′ (28)

R(ω) is experimentally determined by measuring the energy spectra at the static
structure factor maximum of a strongly scattering material such as plexiglass
(PMMA). Examples of measured resolution functions from ID-28 at ESRF are
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Figure 5. (a) Resolution functions for the Si(9,9,9) and Si(11,11,11) monochromator reflection
on analyzer #2 of the IXS spectrometer at ID-28, ESRF (measured 09/2006). The resolutions of each
are 4.0 and 1.8 meV, respectively, as defined by the FWHM of the resolution function profile. Each
resolution function measurement is normalized to E = 0 meV value. (b) I(q, ω) measurements in
room-temperature liquid water (open symbols) and the best-fit DHO model (solid lines) determined
as described in the text. The arrows track the phonon-like sound mode in each spectra. These IXS
spectra demonstrate collective modes in liquid water. The behavior of these features is quantified here
to demonstrate consistency with other measurements. (c) After fitting all the low-q data, the dispersion
relation for the modes in liquid water is found by plotting each mode’s best-fit energy parameter �i(q).
The speed of sound of the high-speed longitudinal acoustic-like mode (LA) is 3100 ± 150 m s−1

(solid line), in agreement with previous measurements [30, 32]. The transverse optical-like mode (TO)
appears only for q > 0.4 Å−1 and is slightly dispersive, as observed in other measurements [32, 78].

shown in Fig. 5a. Instrumental resolutions are typically cited as the FWHM of
the measured resolution function. The q-resolution is determined by the solid an-
gle subtended by the analyzer. It can be reduced by placing slits in front, with a
corresponding reduction in intensity.

An example of a meV IXS spectra from room-temperature liquid water is pro-
vided in Fig. 5b. For length scales larger than the intermolecular distance, S(q, ω)
has a general three-feature Brillouin line shape: a sharp quasielastic peak centered
at ω = 0 and the Stokes and anti-Stokes features representing dispersive density
fluctuations. This line shape is characteristic of many condensed matter systems,
with sharp phonon modes in crystals like ice [28, 46] and broad “phonon-like”
modes in liquids [29, 30, 47], glasses [48, 49], and complex fluids [50–52].

Analyses of IXS measurements described in the previous section fit the mea-
sured intensity spectra to the convolution of the measured resolution function (or
a Lorentzian fit) and a parameterized model of S(q, ω). For disordered systems
such as liquid water, the spectra are fit with a Lorentzian peak to represent the
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quasielastic scattering and damped harmonic oscillator (DHO) function for the
dispersive modes. The form of the total line shape is [29, 45]

F (q, ω) = I0(q)
�0(q)2

�0(q)2 + ω2 + [n(ω) + 1]
∑

i

Ii(q)
ω�i(q)2�i(q)[

�i(q)2 − ω2
]2 + �i(q)2ω2

(29)

where n(ω) = e−βω/
(
1 − e−βω

)
is the Bose factor. The sum over i generalizes the

line shape to allow multiple dispersive features in S(q, ω) [30].

III. GREEN’S FUNCTION IMAGING OF DYNAMICS WITH
FEMTOSECOND TEMPORAL AND ANGSTROM SPATIAL

RESOLUTION

As described in the introduction, IXS allows the spectrum of density fluctua-
tions in water to be determined with high spatial and temporal resolution through
measurements of the dynamical structure factor S(q, ω). We have also reviewed
the theoretical approach to extracting the density response function from S(q, ω)
through causality-enforcing Kramers–Kronig relations. The response function is
a Green’s function which allows the linear response reconstruction of hydration
structures surrounding extended charge distributions [Eq. (25)]. This is a robust
method for studying such experimentally infeasible systems.

In this section, we describe the procedure for reconstructing the dynamical
response function χ(r, t) from a library of meV-resolution IXS measurements,
leading to a new hybrid technique for studying molecular water and hydration
dynamics. First, a complete measurement of S(q, ω) is made over a data range
coextensive with the present limits of third-generation synchrotron X-ray sources.
This enables the reconstruction of the density–density response function described
in the previous section that tracks the average oxygen density correlations in wa-
ter at high temporal and spatial resolution. The response function χ(q, ω) is the
direct measure of water response to an external point charge and is mathemati-
cally a Green’s function. Combining this with linear response forms the basis of
a new data-based perspective to solvation processes. Moreover, the Green’s func-
tion can be used to reconstruct water dynamics around idealized dynamical charge
distributions.

We then compare the extracted response function with state-of-the-art diffrac-
tion experiments, classical molecular dynamics (MD) simulations of diffusional
relaxation, and femtosecond spectroscopic measurements. We then outline the
procedure for combining the response function with image dynamical hydration
structures. As a shorthand, we refer to this general approach as GFID. To illus-
trate the potential of GFID, we image the evolving hydration structure around an
accelerating point charge moving near thermal velocity. Rather than the typical
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abstraction of spherically symmetric hydration shells that rigidly follow a moving
charge, these results indicate that charge movement strongly modifies the hydration
structure, which evolves from a closed spherical shell to a cylindrical hydration
“sleeve” with cylindrical symmetry. Finally, we discuss the strengths and weak-
nesses of GFID in the context of this “proof of concept” example.

A. Dynamical Response Function Extraction from meV IXS
Measurements

The dynamic structure factor of water S(q, ω) was measured for energies to 80
meV over a q range from 0.2 to 7.2 Å−1, as described elsewhere [53]. Most of the
data were measured with incident X-ray energy of 21.747 keV (�E ≈ 1.7 meV for
the Si(11,11,11) reflection). To improve counting statistics, data for q > 6.0 Å−1

were measured with the higher intensity Si(9,9,9) reflection with incident energy
17.794 keV (�E ≈ 3.0 meV). For large q, S(q, ω) has a broad shape, making
this relatively small resolution difference insignificant. Example raw IXS spec-
tra are shown in Fig. 6a. Corrections for sample holder scattering and different

Figure 6. (a) Individual S(q, ω) scans from liquid water measured at beamline ID-28, European
Synchrotron Radiation Facility. For q � 2π/d, where d is the average interparticle spacing, S(q, ω)
has a characteristic Brillouin line shape: a quasielastic peak centered at ω ≈ 0 and the Stokes and
anti-Stokes features indicating the collective modes of the system. For q � 2π/d, S(q, ω) appears as
a Gaussian line shape (e.g., spectra q = 6.3 Å−1) that is centered on higher energies for increasing
q. For large values of q, S(q, ω) reflects the momentum distribution of particles in a liquid [79]. For
room-temperature liquid water, d = 2.8 Å. (b) χ′′(q, ω) from applying the Bose factor n(ω) to the
complete measurement of S(q, ω). While χ′′(q, ω) is shown to only ω = 30 meV, it was measured
to ωmax = 30 meV to assure that all features contained in χ′′ are captured in the data. Adapted from
Ref. [53]. Copyright 2009 by the American Physical Society.
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measurement efficiencies between analyzers were made to the raw measurements.
The result is an experimental measurement of the complete dynamic structure fac-
tor of liquid water over the energy and momentum ranges relevant to molecular
reorganization.

As described in detail in the previous section, the function S(q, ω) is a measure
of the correlation of density fluctuations in a given medium [36]. It is related to
the imaginary part of the linear response function χ(q, ω) = χ′(q, ω) + ıχ′′(q, ω)
by the fluctuation-dissipation theorem,

χ′′(q, ω) = −π
[
S(q, ω) − S(q, −ω)

]
(30)

A few technical considerations need to be accounted for before χ can be recon-
structed from measurement.

IXS measurements with meV energy resolution have a low count rate due to
the extreme reduction in intensity by the high-resolution monochromator. Experi-
mentally, the compromise between measured energy range and counting statistics
must be optimized to the objective of the measurement. As shown in the previous
section, the detailed balance condition S(q, −ω) = e−βωS(q, ω) can be used to
evaluate the energy loss from energy gain measurements. The counting statistics
can be improved by measuring as little of the anti-Stokes part of each spectra as
possible. For the measurement used in the following examples, the data were mea-
sured from −20 to ∼80 meV to observe the full quasielastic line. At ω = 80 meV,
the measured intensity is essentially at background levels. The quasielastic line is
narrow in energy spread (width <1 meV) but has a high intensity. This feature is
broadened by the instrumental resolution function, leading to an artificial contri-
bution to the S(q, ω) measurements away from ω = 0. Because of this, Lorentzian
fits to the elastic line are subtracted from the data to remove artifacts. Finally, we
evaluate Eq. (30) experimentally by dividing the ω > 0 portion of S(q, ω) by the
Bose factor n(ω) = (1 − e−�ω/kT )−1. Because the imaginary part of the response
function is odd, we impose the condition χ′′(q, −ω) = −χ′′(q, ω) on the ω > 0
data (Fig. 6b).

We calculated χ′(q, ω) from χ′′(q, ω) using KK relations, as previously de-
scribed [53]. Fourier transforms require that the argument functions be defined on
an infinite continuous domain. We extended the data onto a continuous interval
using linear interpolation to avoid artifacts from finite, discrete data sets. The IXS
data at the end points of the measurements in q and ω are essentially featureless
and at background count levels. Moreover, extrapolation of the data beyond the
maximum energy measured ωmax is also necessary because KK relations are de-
fined as integrals from −∞ to ∞. Numerical truncation of the integral at ωmax
causes artificial oscillations in the transformation with period 2π/ωmax to appear,
influencing the characterization of any physical features. To avoid these artifacts,
the data are extrapolated essentially to infinity in energy using the DHO model
fit parameters described above. The form of the extrapolation affects density
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fluctuations at much higher frequency than the temporal resolution of our measure-
ment. The best-fit DHO model parameters were consistent with those reported in
other IXS experiments on water. The known acoustic phonon mode with a sound
velocity of 3100 ± 150 ms−1 is observed at low q values as expected (see Fig. 5
for comparison) [29, 30].

S(q, ω) data are measured by scanning the energy transfer ω at a fixed mo-
mentum transfer q. For each measured spectrum, the KK relation is applied to the
measured and extrapolated χ′′ to recover the real part χ′(q, ω):

χ′(q, ω) = − 1

π

∫ ∞

−∞
dω′χ′′(q, ω′)P

(
1

ω − ω′

)
(31)

The full complex-valued χ(q, ω) is then Fourier transformed,

χ(q, t) =
∫ ∞

−∞
dω

2π
χ(q, ω)e−ıωt (32)

to yield an intermediate function χ(q, t) that describes the temporal dynamics of
the spatial Fourier components of the system response. Alternatively, χ(q, t) can
be directly evaluated from χ′′(q, ω), without evaluating the real part. This is done
by a sine transform as shown by Abbamonte et al. [54]:

χ(q, t) = 2
∫ ∞

−∞
dω

2π
χ′′(q, ω) sin(ωt) (33)

The KK method and the sine transform are mathematically equivalent.
The maximum scattering angle at third-generation beamlines limits the largest

measurable momentum transfer. The spatial Fourier transform requires an extrap-
olation step to prevent density artifacts. The choice of extrapolation shape affects
only density features that are much smaller than the interparticle spacing and there-
fore affects only length scales much smaller than the width of hydration shells.
To extend the data, each profile for χ(q, t) was fit with a sufficient number (4 or
5) of Lorentzian peaks to capture its shape. The tails of this line shape were then
used to enforce that S(q, t) → 0 as q → ∞, allowing the calculation of the Fourier
transform integral. The spatial Fourier transform is spherical:

χ(r, t) = 1

(2π)2

∫ ∞

0
q2dqχ(q, t)

2 sin(qr)

qr
(34)

χ(r, t) is a Green’s function that describes how a system responds to a δ-function
perturbation at the origin at t = 0. Several frames of the reconstructed χ(r, t) are
shown in Fig. 7a. χ(r, t) encapsulates the nonlocal charge density induced by a delta
function charge perturbation at a distance r and time t from the origin. After the
delta function impulse at t = 0, the water density relaxes in the form of “ripples”
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Figure 7. (a) The response function χ(r, t) at 100, 250, and 600 fs. At ∼600 fs after the impulse,
the hydration ripples have dissipated. (b) The hydration structure surrounding a point negative charge.
The peak position at r ≈ 1.8 Å indicates the position of the water oxygens in the first hydration shell.
Since the ion is a point charge, no physical comparison exists to compare the position of the first
hydration shell, but the distance between first and second hydration shells is comparable to the distance
in bulk water from X-ray scattering measurements. The distance between first and second hydration
shells around the point charge is 2.6 Å, which is almost exactly the distance in bulk water, rmeas =
2.65 Å [15]. (c) A 2D representation of the hydration structure around a point negative charge (white
circle) at the origin. The dark ring centered 1.8 Å from the center represents an accumulation of oxygen
density with respect to bulk. This color convention is used for the entire section. Adapted from Ref.
[53]. Copyright 2009 by the American Physical Society.

representing the formation and dissipation of transient hydration shells around
the origin. The amplitude of the density fluctuations is maximum after t ∼ 100 fs
and decays back to equilibrium bulk density. Residual density fluctuations are
essentially indistinguishable from zero for t ∼ 1 ps. Previous studies demonstrate
a lack of an isotopic shift for D2O relative to H2O [29], which shows that S(q, ω)
measured by IXS is dominated by motion of the center of mass of the entire water
molecule [32]. The induced density is therefore the center of mass reorganization
of the solvent eater in response to the perturbation.

The experimental energy and momentum resolutions place fundamental limits
on the spatial and temporal range over observable phenomena in GFID. The energy
sampling density of the measurement is much smaller than the energy resolution
of the instrument (�E = 1.7 meV). This limits the maximum time window to
2π/�E = 2.8 ps for the present measurement. This time window is much longer
than the lifetime of any features in χ(r, t), as shown in Fig. 7a. In reciprocal space,
the q-resolution of the instrument (�q = 0.03 Å−1) is smaller than the spacing
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between measured q-transfers (∼0.15 Å−1), which limits the real space window to
2π/0.15 Å−1 = 41 Å. These limits are far beyond all the structure and dynamics of
interest on these scales and are therefore sufficient for capturing the entire usable
water response.

The spatial and temporal resolutions of the Fourier transformed quantity χ(r, t)
depend on the measured maximum momentum transfer qmax and energy trans-
fer ωmax, respectively. An estimate of the resolution is the real space period-
icity corresponding to the highest Fourier space value measured. For example,
this measure of the spatial resolution �r states that the smallest resolvable fea-
tures in the quantity χ(r, t) will be spaced �r = 2π/qmax apart. However, the
even (χ′′(q, t) = χ′′(−q, t)) and odd (χ′′(q, ω) = −χ′′(q, −ω)) properties of the re-
sponse function provide information over a window twice the size of the measured
one, and the resolution can be defined as twice that just using the highest frequency:
�r = 2π/14.4Å−1 = 0.44Å and �t = (658fs · meV)2π/160 meV = 26 fs [54].
It has been shown that the center of mass dynamics of water to which IXS mea-
surements are sensitive occur on much longer timescales [25]. Features in pair
correlation functions for water representing intermolecular distances are much
farther apart than the spatial resolution [14, 15].

B. Comparing χ(r, t) to Established Measurements

The density–density response function is a potentially powerful tool for investigat-
ing systems that are intractable for direct experimental techniques. It is necessary to
verify that the features and timescales contained in the experimentally determined
χ(q, ω) reproduce existing results for simple systems. In this section, we describe
direct comparisons between GFID and current state-of-the-art measurements from
established methods.

Using GFID, we reconstruct the equilibrium (t ∼ ∞) hydration structure sur-
rounding an idealized negative point charge. This is given by the spherical Fourier
transform of χ(q, ω = 0) (Fig. 7b and c). Because IXS characterizes water’s lon-
gitudinal response, the radial displacement of molecules can be observed. The
generated hydration density shows the formation of defined hydration shells sur-
rounding a point charge “ion.” No true point charges exist in reality, so a direct
comparison to a physical hydrated ion is impossible. The first hydration shell po-
sition indicates that it sits at the distance of closest approach for the finite-sized
solvent molecule and an infinitesimal point charge. The distance between the first
and second shells (r = 2.6 Å) agrees well with the measured distance in bulk water
(2.65 Å) [15]. These results indicate that the hydration shells form at reasonable
distances from the position of the point charge.

The diffusive relaxation dynamics of water can be reconstructed from this point
charge ion example and compared to MD simulations. We use linear response



molecular solvation dynamics from ixs 105

theory to calculate δnind(q, ω), the charge density induced by an external time-
dependent charge density δnext(q, ω):

δnind(q, ω) = 4π2e2

q2 χ(q, ω)δnext(q, ω) (35)

It is a measure of the time-dependent, ensemble-averaged oxygen density in water.
We track the hydration structure relaxation for t > 0 after removing the point charge
at t = 0 from its equilibrated hydration structure (Fig. 8a). We measure the time
required by the system to lose memory of the point charge, relaxing back to bulk
density. The density equilibration in the first hydration shell and at the origin is fit
to exponentials with time constants of 125 and 113 fs, respectively. The density
returns to its unperturbed value (δρ ≈ 0) after ∼500 fs.

To assess the fidelity of the dynamics observed in GFID, we compare the re-
laxation of the point charge hydration structure with MD simulations using SPC/E
water. We average the density response from over 1000 MD simulation trajectories
from ion-water systems in which an ion is removed at t = 0 from an equilibrated
system (Fig. 8b, inset) [53]. The MD hydration structures initially show typical
water packing around an ion with well-developed solvation peaks. After the ion is
removed, the profile relaxes to bulk density as water molecules diffuse to fill the
void, leading to a decay of the profile and filling of the ion cavity. The relaxation
of the first hydration shell to the bulk value depends on the ion size and charge. In
all cases, it is roughly exponential with a time constant between 60 and 90fs. This
is slightly faster than the found from GFID. This slight difference is not surprising,
given that the SPC/E water model overestimates the water diffusion constant [55].
Owing to the asymmetric charge structure of the water molecule, and correspond-
ingly of the hydration structures for positively and negatively charged solutes,
there exists a real physical difference in the relaxation dynamics for cations and
anions. These results point out a limitation of GFID in its simplest implementation,
which is that an implementation of excluded volume for water hydrating finite-
sized structures is missing. We return to this point in the next section. Furthermore,
GFID intrinsically does not account for the cation/anion hydration asymmetry. In
linear response, hydration structures differ only by their sign surrounding positive
or negative charges. In spite of these limitations of linear response and of classical
molecular dynamics, the similar results indicate that the basic physics of hydration
are captured in GFID.

These meV-IXS experiments are particularly sensitive to oxygen dynamics in
water. Underdamped density oscillations can be observed for length scales larger
than 3 Å(q < 2 Å−1) in the intermediate response function χ(q, t) (Fig. 8b). 3 Å is
roughly the distance between two O atoms in water. In this q-range, the oscillations
have a period that varies between 180 and 250 fs, with the period having an
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ion types; (inset) MD radial distribution function g(r, t) of water oxygens: 15 different profiles are
shown for t = 0, 20, 40, . . . , 280 fs. Fit exponential time constants vary from 64 fs (for Li+) to 86
fs (for K+). (c) χ(q, t) from IXS data (open symbols) show underdamped density oscillations for
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value, the corresponding curve from the best-fit DHO model is shown. The temporal period of this mode
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damped, driven harmonic oscillator (solid line). For T � 200 fs, the behavior deviates strongly from
the harmonic oscillator. Adapted from Ref. [53]. Copyright 2009 by the American Physical Society.
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inverse relationship with q (Fig. 8c). Inversions of the best-fit DHO functions are
plotted to show that the origins of these oscillations are the dispersive modes of the
dynamic structure factor. For the smallest length scales that exhibit this oscillation
(corresponding to 3 Å), the density oscillation has a period of ∼200 fs. For larger q

values corresponding to intramolecular distances, this oscillation mode vanishes,
which is expected for an intermolecular O–O feature. The limiting 3 Å period is
close to the measured 170 fs period of (q = 0) O–O oscillation between water
molecules from femtosecond IR absorption spectroscopy [24], which is used to
measure the oscillatory dynamics in liquid water.

A standing wave point charge source can be used to probe the oscillatory
dynamics of the response function in more detail. We reconstruct the behav-
ior of water in the presence of a THz frequency charge monopole at the origin
using δnext(r, t) = δ(r) sin(2πt/T ). The temporal and spatial Fourier transform
of this source is simply the sum of delta functions, δn(q, ω) = δ(ω − 2π/T ) −
δ(ω + 2π/T ). With this representation, the steady-state hydration dynamics are
simply the spherical Fourier transform of χ(q, ω = 2π/T ) − χ(q, ω = −2π/T ).
The GFID response of the solvent structure is sinusoidal with the same pe-
riod as the driving monopole but lags it by a frequency-dependent phase shift,
φ(ω) = tan−1(χ′′(ω)/χ′(ω)) (Fig. 8d, inset). For comparison, we fit the measured
phase shift to that of a driven harmonic oscillator in a damping viscous fluid,
for which the analytical phase shift is tan φ(ω) = ωγ/(ω2

0 − ω2), where ω0 is the
resonant frequency and γ is the viscous damping parameter of the fluid [37].
Clearly, the harmonic oscillator model does not fit the behavior of water over
the full range of periods. For high driving frequencies (T < 100 fs), the wa-
ter response at the origin lags behind the oscillator by a smaller than expected
phase shift. As the driving period increases (100 fs < T < 200 fs), this phase
shift increases drastically. Limited agreement with driven harmonic oscillator
models is observed for T � 200 fs (Fig. 8d). The fit resonant frequency ω0 of
17.2 meV implies a temporal period of 240 fs, consistent with the reconstructed
range of values for O–O oscillation from the intermediate function χ(q, t) for this
q range.

For rapid oscillations (T < 120 fs), the GFID phase shift deviates from the
analytic model, indicating a different regime of response. The slope in the phase
shift φ(ω) flattens out for small T (Fig. 8d). The Green’s function cannot respond
to the rapidly changing external charge distribution. The crossover is indicative of
how quickly center of mass reorganization occurs in water. From simulation and
spectroscopic experiments, it is observed that water has two modes of molecular
response: a fast mode from inertial motions with characteristic timescales of tens of
femtoseconds and a slow mode due to diffusional motion on the scale of hundreds
of femtoseconds [25]. Although it does not prove the existence of two modes,
the behavior of the phase shifts near a standing wave source is consistent with
this picture.
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C. An Example of GFID Reconstructed Movies: The Evolution of
Hydration Around an Accelerating Point Charge

The dynamics of the solvent surrounding an external charge density can be recon-
structed from IXS data by directly applying the linear response relation defined in
Eq. (35). As an example, GFID is used to examine inertial effects by monitoring
the evolving hydration structure around an idealized point charge ion accelerat-
ing harmonically in a THz field (v(t) = v0 sin(ωt), v0 = 500 m s−1, ω = 2π/2 ps)
(Fig. 9). The red isosurfaces represent the hydration structure, defined as regions of
enhanced water oxygen density induced by the external charge distribution. Three
frames of the first 600 fs show the evolution of the hydration shell as the point
charge accelerates from 0 to v0. The hydration shell is initially spherical, but is
progressively replaced by a hydration sleeve of cylindrical symmetry. The spheri-
cal shell weakens and the leading edge thins within the first 100 fs of linear motion.
As v increases to its maximum, the point charge breaks through the first hydration
shell, which exhibits significant longitudinal distortion along the axis of move-
ment. This indicates an asymmetric radial reorganization of oxygen density. At
∼500 fs, the hydration structures form a steady-state cylindrical hydration sleeve,
followed by a trail of reduced oxygen density with a velocity-dependent length.
This shows that the hydration structures near moving solutes are different from
those for stationary solutes. Also, due to the influence of the hydration structure
on chemical reactions, moving reactants might participate very differently from
stationary ones.

In the implementation described in this section, GFID calculates the response
of a continuous, dynamical dielectric to an embedded charge density. While this
linear response formalism is rigorous, it is missing a description of excluded
volume required to apply the GFID technique to extended objects such as ions
and molecules. The Pauli exclusion principle prevents molecules from “overlap-
ping,” requiring an extended molecule or surface to have an impenetrable volume.

Figure 9. (a–c) The
evolution of hydration struc-
ture around a point charge
(white sphere) as it accel-
erates harmonically to v0 =
500 m s−1 in 500 fs. 3D
renderings were generated
using the software package
VMD [80]. Adapted from
Ref. [53]. Copyright 2009
by the American Physical
Society.
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The size of this volume determines many of the solvation properties of the
molecule. Examples are the increase in solvent hydrogen bonding [56] and hy-
drogen bond reorientation lifetimes [57] around monovalent anions as the ionic
size increases. The excluded volume of a solute is an important part of the elec-
trodynamical description of molecular hydration. A complete GFID approach for
studying hydration around solutes needs a method that takes into account the ex-
pulsion of solvent from a cavity representing a solute’s excluded volume.

IV. AN EXCLUDED VOLUME IMPLEMENTATION FOR GREEN’S
FUNCTION IMAGING OF DYNAMICS

The linear response function χ(q, ω) is defined to propagate the solvent reorgani-
zation effect of an external charge density. In the presence of a dynamical charge
density δnext(q, ω), the induced charge δnind(q, ω) is

δnind(q, ω) = 4π2e2

q2 χ(q, ω)δnext(q, ω) (36)

To this point, we have demonstrated a technique to extract the linear response
function from a library of meV IXS spectra corresponding to the femtosecond-
scale density fluctuations in water. As a proof of concept, the resulting χ(q, ω)
was applied to simple dynamical charge systems such as slowly accelerating point
charges, for which Eq. (36) is correct. However, this formalism becomes unphysical
when trying to describe the response to extended charge densities such as ions,
molecules, and interfaces. Equation (36) describes the response of a continuous
medium to embedded charge distributions, permitting the solute and solvent charge
distributions to occupy the same volume. Physical, charged systems such as ions
and molecules are prevented from overlapping their volume with solvent molecules
due to the Pauli exclusion principle. This linear response formalism requires a
way to describe excluded volume before it can effectively describe the solvation
structure surrounding realistic charge distributions.

In this section, we describe how GFID can be generalized from abstract, point
charge systems to molecular ones. First, we show that a direct application of lin-
ear response theory fails to accurately describe the hydration environment around
physical, finite-sized molecular solutes. Next, an implementation of solute ex-
cluded volume is introduced. Using a combination of linear response and excluded
volume, we use GFID to generate hydration structures for static and dynamical
“molecules” and show that they are consistent with those of well-studied molecular
systems. This provides us with a toolkit to reconstruct hydration dynamics around
molecular systems using the full Green’s function.
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A. Green’s Function Imaging of Dynamics with Excluded Volume

S(q, ω) is a measure of electron density fluctuations in a bulk material [36]. The
related response function χ(q, ω) is related to the inverse of the dielectric function
ε(q, ω),

1

ε(q, ω)
− 1 = 4πe2

q2 χ(q, ω) = L(q, ω) (37)

The quantityL is known as the dielectric loss function. In the limit of the previously
outlined assumptions, the density response function is a Green’s function that can
be used to image the dynamical hydration structure around a defined external
charge density. The Fourier space linear response relation between the induced
charge density δnind(q, ω) and the external charge density δnext(q, ω) is

δnind(q, ω) = L(q, ω)δnext(q, ω) (38)

which is a simplification only in terminology from the previous definition. L(q, ω)
and its Fourier transform L(r, t) will be used in this discussion rather than the raw
response function to keep the mathematics uncluttered. Reviews of the relationship
between the density–density response function χ(q, ω) and the dielectric function
ε(q, ω) can be found in the following references [33, 36].

Using the linear response relation [Eq. (38)] and a measurement of χ(q, ω),
the induced charge density in a polarizable medium δnind(q, ω) can be determined
for an external charge density δnext(q, ω). This formulation of linear response is
useful for point charge assemblies, but it fails in the case of physical, finite-sized
charge densities representing physical solutes, such as ions and molecules [58].

The induced charge density is related to the convolution of the real space loss
function L(r, t) and the external charge distribution δnext(r, t). For a δnext(r, t)
of finite extent, contributions to the induced charge density from different parts
of δnext(r, t) can cancel due to destructive interference, because L(r, t) describes
both induced positive and negative densities. Physically, the external charge density
becomes too large for water molecules to organize hydration shells around it, and
the granularity described by L(r, t) becomes washed out. Equation (38) describes
an external charge distribution embedded in a continuous dielectric that induces a
bound charge density in response to an external potential. This formalism fails to
accurately describe the solvation charge response due to a molecular solute in liquid
water. Solutes are defined by their charge distribution and by an excluding volume
in which liquid water itself is forbidden from penetrating. The physical basis for
this is the Pauli exclusion principle, where overlapping electron wavefunctions are
forbidden. To use GFID for molecules, it is important to include a description of
the excluded volume of the solute charge distribution in the hydration structure.
What is needed is schematically represented in Fig. 10.
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Figure 10. The bulk Green’s function is
extracted from IXS data. To treat problems such
as water near solid surfaces, water surrounding
solutes, and confined water, we need to remove
the contributions from the volumes schemati-
cally shown in the diagram.

B. Linear Response Formalism with Excluded Volume

A solution to a similar excluded volume problem is required in quantum chem-
istry when seeking the electronic structure and excitation energies of dissolved
molecules. Simulations involving explicit solvent molecules rapidly become com-
putationally expensive as the size of the simulation volume increases. Implicit sol-
vent models where the solvent is modeled as an infinite dielectric can be utilized
to describe the hydration environment more efficiently, but they lack molecular
details. More complicated models account for the dynamical or nonlocal solvent
behavior derived from simulations or analytical approximations [59]. The solute
is modeled as an assembly of nuclear charges, a functional basis representing elec-
tron density, and a cavity chosen to reflect the solute’s morphology. For example,
a simple molecular cavity can be the volume bounded by a set of spheres, centered
on each atom in the molecule with the respective radii matching one that is empiri-
cally determined (e.g., the van der Waals radius). For the case of GFID, combining
the dielectric loss function formalism in Eq. (38) with a similar implementation of
excluded volume is an apt method for describing physical solutes.

The interior of an excluded volume is by definition devoid of solvent and un-
polarizable (ε = 1), and the surrounding solvent behaves as bulk solvent. The
dielectric loss function can be modified to enforce the boundary:

Lmod(|r − r′|; ω) =
{

0, r or r′ ∈ Vexc

L(|r − r′|; ω), r and r′ /∈ Vexc
(39)

where L is determined from IXS measurements of χ(r, t) as described in Eq. (37).
The boundary conditions on the dielectric function ε are accordingly:

εmod(|r − r′|; ω) =
{

1, r or r′ ∈ Vexc

ε(|r − r′|; ω), r and r′ /∈ Vexc
(40)
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ε has the vacuum value of 1 inside the solute’s excluded volume. For isotropic
systems such as liquid water, L depends only on the distance between the points
r and r′. In general, it is a two-point function: the effect of electrodynamical
quantities at a point in space r′ is propagated to the point r. This can be seen in
the real space equivalent of Eq. (38):

nind(r; ω) =
∫ ∞

−∞
dr′L(r, r′; ω)next(r′; ω) (41)

Relating the external charge density to the induced one is a problem for this def-
inition of Lmod. Equation (38) propagates the influence of the charge density at
the point r′ to the position r, but the boundary conditions as defined cancel any
charge density induction if the external charge distribution is completely contained
within the excluded volume. Lmod is nonzero only where next is zero, making their
product uniformly zero. Eq. (38) and the modified loss function Lmod are incom-
patible because the localized external charge densities do not contribute to charge
induction in the media by definition.

Previous work on solute–solvent interactions suggest that the nonlocal fields
generated by localized charges can be used, rather than the charges themselves [60–
63]. The electric displacement D(r) is a property of the localized external charge
distribution that spans all space. D(r) from the solute induces a polarization at all
points in the solvent:

Pα(q, ω) = −
(
ε−1
αβ (q, ω) − 1

)
Dβ(q, ω) = −L(q, ω)Dβ(q, ω) (42)

where ε−1
αβ is the inverse dielectric tensor. ε−1

αβ and Lαβ are tensorial forms of

ε−1 and L found in Eq. (37) [36]. Lαβ can be written explicitly in terms of its
longitudinal and transverse components [64]:

Lαβ(q, ω) = L(q, ω)
qαqβ

q2 + L⊥(q, ω)

(
δαβ − qαqβ

q2

)
(43)

The longitudinal componentL(q, ω) is derived from IXS measurements. The trans-
verse componentL⊥(q, ω) is important in magnetic systems and when studying in-
tramolecular charge reorganization like rotation [64]. The characteristic timescale
for oxygen oscillation in water is ∼200 fs [24, 53], so the molecular dynam-
ics of interest in water occur on timescales of hundreds of femtoseconds. The
inertial reorganization of water molecules occurs on the order of tens of fem-
toseconds, so the transverse component can be ignored when the relative motions
of water molecules are of interest. The dynamical polarization induced in the
solvent surrounding a solute molecule is related to the solute’s dynamical elec-
tric displacement D(q, ω) and the Fourier transform of the modified dielectric
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loss tensor, Lmod
αβ (q, ω) in linear response,

Pα(q, ω) = Lmod
αβ (q, ω)Dβ(q, ω) (44)

with an implicit sum over β. The relationship between the electric displacement
and the induced polarization is defined in Fourier space for simplicity, but it is also
helpful to calculate these quantities in real space. Equation (44) is a convolution
in real space:

Pα(r, t) =
∫ t

−∞
dt′

∫ ∞

−∞
dr′Lmod

αβ (|r − r′|; t − t′)Dβ(r′; t′) (45)

where Lmod
αβ (|r − r′|; t − t′) is the Fourier transform of the tensor Lmod

αβ (q, ω) that
integrates the modified density response function [Eq. (39)] into the polarization
calculation. The goal for this procedure to image the hydration structure surround-
ing a defined dynamical molecular solute, as indicated by the induced charge
density. It can be computed directly from the real space polarization,

nind(r, t) = −∇ · P(r, t) (46)

Pα(r, t) is uniformly zero for r ∈ Vexc as defined in Eq. (39), which is consis-
tent with our definition of excluded volume. Solvent that would mediate charge
induction is forbidden from the inside the cavity. For r /∈ Vexc, Pα(r, t) is depen-
dent on the displacement field over all space except from the cavity. Equation (45)
can be written in terms of the boundary-free induced polarization P0

α(r; t) and a
boundary-enforcing correction δPα(r; t):

Pα(r; t) =
{

0, r ∈ Vexc

P0
α(r; t) − δPα(r; t), r /∈ Vexc

(47)

where

P0
α(r; t) =

∫ t

−∞
dt′

∫ ∞

−∞
dr′Lαβ(|r − r′|; t − t′)Dβ(r′; t′) (48)

and

δPα(r; t) =
∫ t

−∞
dt′

∫
Vexc

dr′Lαβ(|r − r′|; t − t′)Dβ(r′; t′) (49)

The correction discards the nonlocal contribution to the induced polarization from
the cavity Vexc at all points. For r ∈ Vexc, Pα(r; t) = 0, which accounts for the lack
of polarizable solvent inside the cavity. Equation (47) is an equivalent approach to
the one defined by Eq. (45).
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It is notable that this general approach for describing the excluded volume
has been used in other systems. For example, it has been used to describe model
solute–solvent systems where the solvent is approximated as a continuous dielec-
tric [60–63]. These boundary conditions have been shown to underestimate the
long-time relaxation that is better captured in more accurate treatments, such as
Gaussian field models of solvation. In these, an inverse tensor of the dielectric
loss function is used rather than a simple subtraction of the cavity contribution
[65]. In principle, it is possible to compare the Gaussian solvation model and the
cavity subtraction approach with our data. However, the timescales over which a
difference is observed [65] is significantly longer than the longitudinal relaxation
lifetime of water (∼0.7 ps) [22]. In the case of our measurements, the extracted
response function has largely decayed to low signal levels over this timescale. The
observable difference between the two theoretical formalisms is likely on the scale
of other sources of noise in the measurement.

A benefit of this implementation over the tensorial approach is computational
efficiency. Tensor inversion can be implemented within GFID, but becomes com-
putationally expensive when imaging dynamical solvation structures due to the
added computation of inverting the two-point susceptibility tensor over all points
in space at each time step. By comparison, the spatial parts of Eqs. (48) and (49)
can be calculated using fast Fourier transform (FFT) at each time step and are
computationally efficient. Equation (49) is written as an integral over the excluded
volume, which is incompatible with FFTs. However, introducing a “filter” function
�(r; Vexc) = ∑

ri∈Vexc
δ(r − ri) allows it to be written as an integral over all space

and therefore capable of being evaluated with an FFT:

δPα(r; t) =
∫ t

−∞
dt′

∫ ∞

−∞
dr′Lαβ(|r − r′|; t − t′)Dβ(r′; t′)�(r′; Vexc) (50)

C. Examples

Using this form of GFID, it is possible to reconstruct the hydration structure around
an external charge density with explicit excluded volume. In the following exam-
ples, the density response function for liquid water used is from the measurements
described in the previous section.

1. Static Hydration Structure Around Ions

The simplest model of a classical ion is a charge distribution centered inside with a
spherical excluded volume. The difference in excluded volume from which solvent
water molecules are prohibited is one of the most important differences between
ionic species of the same charge. In many classical molecular dynamic models
of water, a simulated ion is implemented as a charge contained in a Lennard-
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Figure 11. For a fixed external charge distribution (a Gaussian with width σQ = 0.3 Å), the
excluded volume radius rexc is varied from 1.0 to 2.5 Å. The induced charge density δnind(r) is plotted
as a function of the distance from the center of the external charge distribution. The position of the first
minimum (negative induced charge density) represents the first hydration shell position of oxygen, as
it carries the negative charge density in water. This peak position can be continuously controlled by
the parameter rexc. Adapted from Ref. [58].

Jones sphere with a diameter that varies with species. Using GFID and excluded
volume, we can examine the effect of the charge distribution size and diameter
independently and compare the results with measurements.

First, we investigate the induced charge density in the surrounding medium as
a function of cavity size (Fig. 11). The position of the induced negative charge
density, and therefore the water oxygen atoms, represents the position of solute’s
hydration shells. For this example, the excluded volume is a sphere of radius rexc.
We can adjust the position of the first hydration shell to match the values determined
by other methods for the desired ionic species by the choice of rexc. The effect of
spatial distribution of charge can be independently controlled for fixed excluded
volume. Figure 12 shows how the magnitude and the shape of the induced charge
density is affected by the spatial distribution of charge for a fixed cavity radius
(rexc = 2 Å). The induced negative charge density around the excluded volume
decreases in magnitude as the external charge distribution leaks into the medium.
For a particular coordinate r, less charge is contained within the sphere of radius
|r|. As expected from Gauss’s law, the displacement vector D(r) and the induced
polarization P(r) are weakened.
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Figure 12. The effect of the diameter of the charge for a fixed excluded volume (rexc = 2 Å).
The external charge distributions are modeled as Gaussians centered at the origin with widths σQ = 0.1
Å (induced charge density shown as a solid line), σQ = 1.3 Å (dash-dot line), and σQ = 2.5 Å (dotted
line). When the charge is mostly contained within the excluded volume, the induced charge density is
nearly conserved (σQ = 0.1, 1.3 Å). For larger distributions (σQ = 2.5 Å), where significant fractions
of charge penetrate the surrounding medium, the induced charge density is weakened. Additionally,
the induced features are slightly broadened compared to the narrower charge distributions. Adapted
from Ref. [58].

We can adjust these parameters to match calculated hydration structures with
known ions. Anions such as Cl− and F− have well quantified first-coordination
shell ion–oxygen positions of ∼3.1 Å [66] and ∼2.7 Å [67, 68], respectively. Using
the excluded volume radius rexc and charge width σQ as tunable parameters, a li-
brary of hydration structures can be generated. The electron density for each ion is
calculated using GAMESS, a density functional theory software package [69]. Us-
ing these calculated charge distributions, we find good agreement in the first peak
position of negative induced charge density and the known ion–oxygen distance
when rexc is ∼2.25 Å for Cl− and ∼1.75 Å for F−. These values for rexc are larger
than the bare ion radii (1.81 Å for Cl−, 1.36 Å for F−) [70]. This is not surpris-
ing due to the solvent water molecule’s own finite size. The approach of “tuning”
the excluded volume according to known hydration structures could help deter-
mine physical excluded volume parameters for similar systems that have unknown
solvation structure. An example of this is using the known methane hydration
structure from simulation [71] to find the effective excluded volume in GFID for
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a C–H group. These parameters can then be used to estimate the excluded volume
of C–H groups in more complicated organic molecules such as hydrocarbons.

2. Dynamical Hydration Structure Around Dynamical Charge Distribution:
Coumarin Photoexcitation

Charge density changes from solute electronic excitations are simple systems to
study dynamical hydration structure changes. Coumarins are a class of organic
chromophores used as a gain medium in dye lasers [72]. They have also been used
to study solvation dynamics experimentally [25] and theoretically [73]. Here, we
use a model of the ground state and excited state charge density of a coumarin anion
as a GFID input to observe the hydration structure dynamics around a dynamical
model solute.

The molecular structure and excluded volume of a coumarin ion (C343−) is
shown in Fig. 13a. The ground state and excited state charge densities are modeled
as point charges on the molecular centers and are provided elsewhere [73]. We
define the excluded volume to be spheres centered at each atom in the molecule,
with radii corresponding to the sum of that atom’s van der Waals radius and the
approximate radius of a water molecule (r = 1.3 Å). This represents the distance
of closest approach of a solvent molecule’s center of mass to the solute.

We reconstructed the dynamical hydration structure around the model C343−
molecule using the density response function from IXS experiments as described
in the previous section. The molecule is defined to be in its ground state and
equilibrated with the surrounding hydration environment. Figure 13b depicts the
induced oxygen density surrounding the C343− as a red isosurface. The strong
hydration structure resides near two strongly charged oxygen atoms. Very little is
induced near the hydrophobic, carbon dominated part.

For this reconstruction, the C343− is excited by changing its charge density
to that for the excited molecule. The excluded volume is assumed to be constant.
Figure 13c shows the change in molecular charge δq, with yellow patches signi-
fying an increase in atomic charge and green a decrease. The size of the patches
reflects the magnitude of charge change. The excited state reflects a reorganiza-
tion of roughly 10% of the total charge to the middle of the molecule, inducing
a hydrophilic patch there. This is seen qualitatively in the difference plot of the
equilibrium ground state hydration structure ngs and the equilibrium excited state
hydration structure nexc in Fig. 13d. The red surface represents an accumulation
of additional water oxygen density in the excited state, while the blue represents
a depletion. Qualitatively, water density shifts to hydrate the newly hydrophilic
portion of the molecule.

The excitation and relaxation of the coumarin molecule serves as a probe of
the hydration reorganization, as shown in Fig. 14. An equilibrated, ground state
C343− molecule is excited at t = 50 fs. The response is tracked quantitatively
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Figure 13. As an example, we show the hydration structure changes surrounding a model chro-
mophore sequentially excited from, then relaxing to, its ground state charge structure. (a) The atomic
structure of the coumarin-343 anion (C343−) [73]. A model for the ground state and excited state
charge densities is also provided in that reference. The excluded volume (dotted isosurface) is defined
as the sum of spheres centered at each atomic coordinate. The radius of each sphere is defined by the
van der Waals radius of the underlying atom plus the approximate van der Waals radius of a water
molecule (1.3 Å), indicating the distance of closest approach for a solvent water molecule’s center
of mass to the solute. (b) The hydration structure surrounding a C343− molecule in its ground state.
The solid isosurface represents the accumulation of water oxygen density. (c) When the molecule is
excited, charge is transferred across the center of the molecule. The charge change δq is shown here,
with increasing charge (δq > 0 for the atom) designated by white and reduced charge (δq < 0) as gray.
The diameter of the patch indicates the magnitude of δq, with the largest patch representing roughly
a 10% charge change. (d) The excited C343− molecule induces a shift in the surrounding hydration
structure from the ground state. Water oxygen is accumulated around the center of the molecule and
depleted from the end that dominates the ground state hydration in (b). The isosurfaces here represent
a 20% change in density from those in (b).

by measuring the deviation of the dynamical induced charge density nind(t) from
ngs, 〈(nind(t) − ngs)2〉. For simplicity, we normalize this quantity by the deviation
of the end points of the reconstruction, 〈(nexc − ngs)2〉. If the deviation is zero,
nind(t) = ngs. If it is unity, nind(t) = nexc.
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Figure 14. A hydrated ground state C343− molecule is excited (t = 50 fs), and the surround-
ing hydration responds to the change in the solute charge density. The deviation of the dynamical
hydration structure nind(t) from ngs, the equilibrium hydration structure surrounding the ground state
charge density, is plotted as a function of time. This deviation is normalized by the deviation of nexc,
the equilibrium hydration structure surrounding the excited state charge density, from ngs. When the
normalized deviation is equal to zero, nind(t) is equivalent to ngs. When the deviation is unity, nind(t) is
equivalent to nexc. From the plot of the deviation for t < 1000 fs, the solvent responds to the excitation
of the solute. The induced density rapidly responds to changes in the solute’s charge density on a
timescale of the order of a few hundred femtoseconds. When the molecule relaxes to its ground state
(t = 1050 fs), the same 100 fs timescale is observed in the deviation response of the solvent. These
timescales observed using GFID agree with those measured for the center of mass reorganization of
water around small photoexcited solutes [25].

From Fig. 14, the solvent rapidly reorganizes in response to the solute charge
density change. This occurs on the timescale of 200 fs and is complete after 700 fs.
The rapid dynamics of center of mass reorganization is consistent with spectro-
scopic measurements of the hydration environment surrounding a real coumarin
molecule [25]. We then relaxed the molecule by switching its charge density at
t = 1050 fs and tracked the relaxation response. It occurred with identical dy-
namics to the excitation response, which is expected due to the linear response
assumption.
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This application of GFID demonstrates its capability for reproducing spectro-
scopic measurements by using the measured bulk response function with the same
femtosecond resolution limitations. More important, it is able to simultaneously re-
construct the three-dimensional hydration structures with sub-Å spatial resolution.
This combination of spatial and dynamical resolution gives GFID the capability to
probe any number of systems that are currently infeasible for other experimental
techniques.

3. Hydration of a Surface with Time-Independent Excluded Volume

We use the above protocol for implementing excluded volume in polarizable media
to reconstruct hydration near solid surfaces. It is important to note that although
the surface structuring of the first water layer near this perfect abstract surface is
smoother than that near real surfaces, the dynamics of subsequent hydration layers
are described by the measured water–water interactions contained in the Green’s
function from inelastic X-ray scattering. We examine the hydration structure of
a surface with a single embedded dipole. Each dipole is composed of charges q

separated by d = 2 Å, centered at y0 = 2 Å below the solid–water interface, and
oriented so that the dipole moment is normal to the interface. The hydration struc-
ture near the solid surface is reconstructed from the bulk response function using
the FFT-based methods described previously. An example of the 3D hydration
structures is shown in Fig. 15, which also depicts the projection of the density onto
the x–z plane. In contrast to the isotropic spherical shell of the hydration structure
of a point charge, the hydration structure of a surface with a single dipole can be
represented as a hydration “cap” or “umbrella,” due to the existence of excluded
volume interactions. In addition, this is oxygen density immediately adjacent to
the solid surface. This density contains information on submolecular variations of
oxygen density in the surface adhesive water and is commonly seen in simulations.
To see this more clearly, the 3D hydration structure of water near the solid surface
can be dissected as a z stack of 1 Å integrated layers (Fig. 15). Slice 1 shows den-
sity accumulation directly adjacent to the surface, indicating strong interactions
between water and the dipole surface. Slices 2 and 3 show the first hydration shell.
Density perturbations in layers for increasing z are diminished (slices 4 and up).
Generalization of this technique for surfaces with more complex charge distribu-
tions can make contact with problems ranging from the no-slip boundary condition
to nanoconfined water.

D. Discussion

To intuitively describe the excluded volume implementation, one must first think
of the boundary-free case. In Eq. (36), the solvent is treated as a continuous di-
electric media for which the nonlocal properties and dynamics are determined by
the response function. The solute is represented by an external charge distribution
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Figure 15. (a) A dipole embedded in a solid surface, with geometric parameters used in
the GFID reconstruction. (b) An induced density isosurface for a dipole site embedded in a solid
surface (+q and −q). The light blue surface represents the cutoff for the excluded volume of the sheet.
The solid density isosurfaces indicate the local accumulation of water oxygen. Note that the isotropic
hydration shell of point charges has changed into a hydration “cap” in response to the excluded vol-
ume. (c) 1 Å integrated slices from the hydration structures of the single dipole in panel (b) (bottom is
adjacent to surface, ordered going up with increasing distance from the surface, black bar represents
1 Å along the vertical axis). Water density can be found near the dipole position, indicating an ad-
hesive layer that becomes part of the surface. Just above this are the first hydration shells of adhered
water.

embedded in the dielectric. The polarization induced by the charge distribution
at a particular point depends on the distribution’s electric displacement over all
space. Mathematically, the induced polarization is the convolution between the
displacement and the dielectric tensor. The excluded volume implementation de-
scribed here is a simple correction to the boundary-free case. It is a cavity in which
the dielectric tensor is uniformly zero (ε = 1) surrounded by solvent that responds
according to the measured bulk properties. At a point outside the excluded volume,
the polarization induced is the same as in the pure case, minus the contribution
from the excluded volume. In essence, the excluded volume is carved out of the
dielectric, with its contribution to screening the induced polarization elsewhere
removed. The boundary defines where the solvent is permitted and where it is not.

This implementation lends itself immediately to systems in which the charge
density is dynamical while the excluded volume is constant. An example of this
is an infinite 2D charged sheet. Moving the sheet with a velocity parallel to the
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plane of the sheet will cause a time-dependent displacement field that interacts
with the solvent, but leaves the impenetrable boundary constant. Generalization
of the present approach to account for dynamic excluded volumes is nontrivial. A
more sophisticated implementation of excluded volume might require an approach
that combines the density and polarization fields into a single description.

V. CONCLUSIONS AND OUTLOOK

As shown in the examples from Section IV.C, it is possible to reconstruct the
hydration structure surrounding model solutes with excluded volume from meV
IXS data. It is important to address the range of validity of this technique. For
example, what are the physical limitations on the range of systems that can be
studied using this technique? Linear response theory is believed to hold for most
cases of physical solute–solvent systems, but it has been recently demonstrated
to sometimes fail for cases involving chemical reactions and photoexcitation in
various solvents [74–76]. A direct comparison between linear response in optical
spectroscopies and in GFID is complicated by inherent differences in the underly-
ing measured quantities. The physical mechanisms of linear response breakdown
should be addressed before discussing them in the context of the specific linear
response formalism in GFID.

The assumption of LR is that for small changes in solute charge density, the
solvent relaxes through the same modes that govern density fluctuations at equi-
librium. There are obviously physical situations in which LR fails to accurately
describe hydration. An example of this is the solvent dynamics around positive and
negative ions. In LR, exchanging a negative ion of identical valence for a positive
one should result in a hydration structure that is identical in magnitude but op-
posite in sign. The asymmetric charge structure of water causes more substantial
hydration differences between anions and cations than a simple sign inversion. LR
is said to break down when this assumption does not hold. Recent experiments and
computational models have become sophisticated enough to test the limits of LR.
Several examples of LR breakdown have been demonstrated, where symmetric
changes in the parameters of an experiment result in qualitatively different relax-
ation responses from the system. Recent examples of LR breakdown typically fall
into two general mechanisms. The first is that upon excitation, the solute changes
size. This affects the steric state as well as the energetics of hydration, rather than
just the latter [74], causing a breakdown of LR. Similar systems show an asym-
metric relaxation between the photoexcited cationic and anionic states of sodium
[76]. The second type occurs when the solute changes so rapidly that it breaks
the LR assumption of continuous solute–solvent interaction. For example, a CN
molecule can maintain its angular velocity for many periods after photoexcitation,
rather than continuously losing rotational energy to the environment, as it would
under LR [75].
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Systems with time-dependent excluded volume comprise a special class of
problem. Although it might provide reasonable results, defining a time-dependent
boundary according to the conditions specified in Section IV is incorrect. A dynam-
ical excluded volume enforces an instantaneous rearrangement of solvent density
and is unphysical. Furthermore, the induced polarization is subject to special treat-
ment inside the cavity. It is explicitly set to zero. There is no way to enforce that
the particle density is zero, so the excluded volume is indiscernible from zero in-
duced polarization. It is clear from this consideration that to study a system with
the present implementation of excluded volume, it must have a constant boundary.
Physically relevant systems within this restriction include shearing infinite planar
sheets or cylinders and molecular excitations inside of spheres, where the external
charge densities move inside of excluded volume.

More sophisticated excluded volume treatments will be required to allow a dy-
namical excluded volume. An attempt based on this implementation could include
defining the cavity as the phenomenologically determined, time-dependent com-
bination of the initial and final cavity states. The chosen combination dynamics
could be determined from arguments involving the self-diffusion constant of water
or molecular dynamic simulations. This approach would still not be able to dis-
criminate between its regions of excluded volume and zero induced polarization,
however. A rigorous treatment requires the particle density and the electrostatic
interactions to be treated simultaneously, similar to a dynamical version of the ap-
proach Beglov and Roux used for electrostatic solutes in water [77], or techniques
based on the general Langevin equation [9]. Both approaches treat particle density
and induced charge density separately and simultaneously. The first considers the
solvent as a continuous dielectric as it has been throughout this section, while the
second involves using interaction site models to describe the solvent and would
allow the enforcement of solvent molecule granularity.

Having outlined the limitations, the GFID approach can have broad utility for
many contexts. There are many physical systems for which simultaneous access
to femtosecond dynamic information and sub-Angstrom spatial information can
be illuminating. The dynamics of small volumes of water confined in nanometer
channels simultaneously influences as well as gets influenced by the chemistry
of the confining walls. Examples of this include “nanorheometers” composed of
charged mica sheets and hydrophobic carbon nanotubes used in nanofluidic de-
vices. The chemical composition of the channels and introduction of impurities
can be freely studied in GFID, which can guide the design of novel nanoscale
devices.

GFID might also be used to improve the efficiency and accuracy of molecular
dynamics calculations. As described earlier, there is no universal model of water.
Combining a “local” layer of molecular water with a large-scale water description
based on the measured response function of water would improve the accuracy and
efficiency of simulations. The measured response function captures the empirical
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charge dynamics of water and would respond more accurately to the molecular
motions in the system. The use of Green’s function reduces the number of molecular
degrees of freedom and the size of the MD “water box,” which can result in
speedup of the simulation. Direct method versions of GFID (rather than FFT-
based calculations) might also be used to eliminate the need for periodic boundary
conditions.

As the quality of S(q, ω) measurements improves, the density–density response
function could potentially be used to generate newer models of water itself. The
charge density of a water molecule in bulk simulations could be systematically
optimized to match the simulated density response to the measured one. Simi-
larly, GFID could potentially be paired with a molecular dynamics description of
granular molecules to recover the effects of diffusion in charge reorganization.
One potential approach might be to use Monte Carlo calculations to find molecu-
lar configurations of water that best fit the induced hydration structure calculated
through GFID.

A more ambitious implementation of GFID could include iteration to allow
the solute and solvent charge structures to “interact” in a self-consistent way. One
could calculate the solvent structure around a given solute charge density. Density
functional theory can then be used to calculate the solute structure, given the solvent
structure. The procedure can be iterated, using the calculated solute structure as
the next procedural input, until a predefined measure of convergence is reached.
This can be extended to solute dynamics either by “exciting” the solute molecule
or by parameterizing the nuclear coordinates, for example, and calculating a self-
consistent solute–solvent structure at each time step. Using this approach, the
measured response function can be used to improve dielectric solvent models for
quantum chemistry calculations of solute electron density.
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